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ABSTRACT 

The increased penetration of uncertain and variable renewable 
energy presents various resource and operational electric grid 
challenges 1 . Micro-level (household and small commercial) 
demand-side grid flexibility could be a cost-effective strategy to 
integrate high penetrations of wind and solar energy, but 
literature and field deployments exploring the necessary 
information and communication technologies (ICTs) are scant. 
This paper presents an exploratory framework for enabling 
information driven grid flexibility through the Internet of Things 
(IoT), and a proof-of-concept wireless sensor gateway (FlexBox) 
to collect the necessary parameters for adequately monitoring 
and actuating the micro-level demand-side. In the summer of 
2015, thirty sensor gateways were deployed in the city of 
Managua (Nicaragua) to develop a baseline for a near future 
small-scale demand response pilot implementation. FlexBox field 
data has begun shedding light on relationships between ambient 
temperature and load energy consumption, load and building 
envelope energy efficiency challenges, latency communication 
network challenges, and opportunities to engage existing 
demand-side user behavioral patterns. Information driven grid 
flexibility strategies present great opportunity to develop new 
technologies, system architectures, and implementation 
approaches that can easily scale across regions, incomes, and 
levels of development.  
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1 INTRODUCTION 
The penetration of uncertain and variable renewable energy is 
now occurring across many regions, incomes, and levels of 
development. In the immediate future, countries such as 
Uruguay are expected to produce 35% of their generation from 
wind energy alone (2016), Kenya expects 300 MW of wind to 
come online in 2016, Thailand will develop 3 gigawatts (GW) of 
rooftop and village based solar projects (2021), and Africa’s 
Clean Energy Corridor should significantly increase the 
penetration of renewable energy in the continent [1][2]. In 
Central America, Costa Rica has produced up to 100% of its 
generation from renewable resources (~25% without large 
hydropower), and Nicaragua produces ~40% of it’s total 
generation from non-large hydropower renewable resources. 
Indeed, some research suggests that between 2015 and 2040 
approximately $US12.2 trillion will be invested in global power 
generation, with two thirds of the total being dedicated to 
renewable energy, and with the great majority (78%) of this 
investment occurring in emerging economies [3].  

Similarly to future trends in power generation, future growth 
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in urbanization will also mainly occur in cities of the rising 
south. UN Habitat reports that in the past decade, the urban 
population in emerging economies grew on average 1.2 million 
people per week, with Asia adding 0.8 million new urban 
dwellers every week, followed by Africa (0.23 million/week), and 
Latin American and the Caribbean (0.15 million/week) [4]. It is 
expected that seven out of ten people will be living in cities by 
2050 [4][5]. Similarly, the growth in the use of cellphones and 
smartphones is also unprecedented. Currently there are more 
active mobile connections (7.8 billion SIM connections and 4.8 
billion unique mobile subscribers) than people in the world (7.4 
billion), with penetration rates being large even in low-income 
economies (89 subscriptions per 100 people) [6][7]. Although 
currently low, the number of 3G/4G users is expected to double 
by 2020 (2.5 billion users) [8]. With most renewable energy, 
urbanization and connectivity growth in the coming decades 
occurring in low and lower-middle income countries, it is 
becoming increasingly important to understand how to harvest 
information from resource constrained environments (RCEs) to 
provide value both to users and urban services (for example, 
energy, water, transportation, and banking) [5][9][10].  

In this paper we introduce the FlexBox, a wireless sensor 
gateway and associated suite of sensors that monitors and 
controls thermostatically controlled loads (TCLs), integrates TCL 
state information with household-level electricity metering, and 
combines this information with grid level data in the cloud. We 
demonstrate the potential for this gateway to provide demand 
response (DR) ancillary services for renewable energy 
integration in Managua, Nicaragua. Although Nicaragua has the 
second lowest GDP per capita in the Western Hemisphere, it is 
also one of the countries in the world with the highest 
penetration of non-hydropower renewable energy (on an hourly 
basis, it can produce up to 50% of its generation from wind 
power alone) [1][11]. This paper first describes related work 
(Section II), Section III introduces the FlexBox as a part of a 
system, and Section IV discusses preliminary results and 
challenges from the technology’ s first deployment in Nicaragua. 
We present future opportunities and challenges for networking 
thermostatically controlled loads in resource-constrained 
environments.  

2 RELATED WORK 
Attention towards the actuation of TCLs has grown as the 
penetration of intermittent renewable energy increases with 
innovations being made in theoretical frameworks, controlled 
environment pilot tests, development of new technologies, and 
field deployments [12][13][14]. In this section, we review 
theoretical approaches to demand side grid flexibility, also 
known as demand response, review existing solutions to the 
actuation of thermostatically controlled loads to provide power 
grid services, and briefly discuss field deployments available in 
the literature.  

2.1 Theoretical Approaches to Demand 
Response 

DR is related to the “end-use”, with electric loads (and users) 
reducing or shifting their usage in a given time period in 
response to a price signal, financial incentive, environmental 
condition or reliability signal [15]. Electric loads exist under 
three broad categories: (1) inflexible/on-demand (lights, 
television sets, radios, desktop computers), (2) deferrable 
(washers, dryers, dishwashers), (3) and flexible (HVAC, EVs, 
refrigerators, water heaters) [13]. Smart flexible energy loads 
(TCLs) contain enough local energy to run for an extended 
period of time, and an intelligent controller can engage with 
them via direct load control (DLC) to manage energy reserves 
without significantly inhibiting operation [16]. Furthermore, 
TCLs can be controlled for the purpose of curtailment, 
substitution, storage, and/or load shifting [17]. The theoretical 
approach to demand response has motivated a wide body of 
work that seeks to show that large aggregations of TCLs can be 
used both to bid into grid related ancillary service markets for 
profit as well as to maintain reliable power system operations 
[18][19][20][21][22]. Detailed end-use models explore associated 
uncertainties in aggregating TCLs, algorithmic bidding 
approaches toggle load switch controllers for managing wind 
forecast error and reducing external balancing penalties, and 
control and differential equation approaches for modeling the 
effect of broadcasting signals for TCL set point adjustments 
[17][23][24][25]. In general, room temperature, inside 
temperature (of a room, or inside a refrigerator, for example), 
power consumption, and TCL characteristics (resistance, 
capacitance, and wall thickness, for example) are all used for the 
design of a smart controller [20]. Although complex and highly 
detailed, many of these models make simplifying assumptions 
that could significantly affect model choice and development 
including the possibility of heterogeneity across micro-climates 
in urban areas, insulation of houses (or buildings) where TCLs 
reside, load efficiency, the size (and varying thermal mass) of 
TCLs, and random user behavioral patterns that can drive TCL 
cycling. Furthermore, data acquisition devices (sensors and 
power meters, for example) and communications platforms and 
protocols are discussed abstractly, with most of the effort being 
directed towards the development of theoretical frameworks to 
further enable greater grid flexibility.  

2.2 Available Sensing, Actuation and Control 
Solutions 
There exists a panoply of solutions for networking sensors and 
plug load devices in higher-income countries, but the literature 
is scant regarding how sensing infrastructure will grow and be 
networked in countries with low internet access, and spotty 
communication networks. In countries with high internet 
penetration, the monitoring of loads can be done through Wi-Fi 
enabled large smart home appliances, plug- level monitors 
(individually installed and programmed, often with proprietary 
communication protocols), and non-intrusive load monitoring 
(NILM) [26][27]. NILM is an alternative to ubiquitous plug level 
monitoring, only requiring one energy meter to monitor whole 
house energy consumption, and signal processing for load 
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disaggregation, but to date, this remains mostly a research effort 
[27]-[35].  

Communication protocols for energy reporting and control of 
devices are primarily designed for local area networks (LAN) 
(e.g. stacks such as Zigbee or Z-Wave), and APIs, such as 
OpenADR and GreenButton which are intended for use over the 
internet [26][27]. Zigbee’s Smart Energy Profile enables low-
power device monitoring using 802.15.4 radios and links that 
support IPv6 through an HTTP interface, and OpenADR 2.0b and 
GreenButton Connect are XML standards for energy data 
exchanges between utilities, consumers, and third-party service 
providers [26][27]. Differently from Zigbee and IETF 
6LowWPAN (which use IEEE 802.15.4) Z-Wave uses a 
proprietary low-latency transmission communications protocol 
that uses small data packets at 100kbit/s, operating through a 
source-routed mesh network that helps the device avoid 
obstacles and radio dead spots in a multipath environment. 
Zigbee and Z-Wave differ from OpenADR and GreenButton in 
that the latter were designed for high- bandwidth network 
connections and large files sizes, making them less useful for 
low-power local area networks [26][27]. Z-wave uses a source-
routed mesh network architecture. In addition, Bluetooth 
(communicating over IEEE 802.15.1) can be used for short-range 
applications to replace cables for computer peripherals such as 
mice, keyboards, and printers, but to date has few applications 
for monitoring and control of electric loads [35][36][37].  

In California, Radio Broadcast Data Systems (RBDS) have 
been recommended as the statewide DR broadcasting signaling 
standard, and it has been shown that RBDS can be used to 
broadcast one-way demand response messages with near 100 
percent probability using merely just one FM station 
[38][39][40]. RBDS use a 57 kilohertz subcarrier to transmit over 
1 kbts, with data being transmitted in groups of four blocks (26 
bits each) [38][39]. All available FM channels (frequencies) 
within proximity can be used to broadcast signals, with the 
probability of message reception being dependent on signal 
strength and the number of message repeats [38]. Since DR 
applications only add one to two percent of total average 
transmission station capacity to a channel, FM station contract 
costs for RBDS are relatively low (hundreds of dollars per 
month) [38]. A downside, however, is the one-way nature of the 
FM broadcast. 

2.3 Research Pilots and Field Deployments 
While there have been a variety of approaches that have been 
shown to be effective in simulation there are two principal 
questions that have largely remained unaddressed: 1) how well 
do algorithms and loads behave in practice? and 2) what is the 
actual size of the resource that is available for demand response 
in a region or country? Research pilots have investigated the 
potential of deferrable and flexible loads to provide grid-
flexibility using loads as virtual power plants and exploring 
opportunities for users to experience energy savings through 
real time pricing. These pilots have instrumented as few as one 

and as many as five refrigerators to study real-time behavior of 
loads under DR [13][40][41]. A few have also developed 
proprietary thermal-storage eutectic phase-change storage 
systems that can be controlled [13][40]. Some of the business 
scenarios explored in these pilots include: (1) the aggregation 
and market-auctioning of thermal storage ‘virtual power plants’ 
(controllable tool kits are given to businesses and households for 
a load aggregator to make a profit through auctioning), (2) 
‘smart refrigerators’ independently taking advantage of real time 
pricing opportunities (users buy a controllable tool kit to take 
advantage of real time pricing), and (3) incentives for supply 
following loads.  

In California, some research pilots have suggested that a 
‘thermal storage refrigerator’ controlled through a load 
aggregation framework could have great value and a relatively 
fast five-year payback period, while others have found that 
Californian households would only benefit from buying 
‘controllable tool kits’ if real time prices were slightly higher 
than what they currently are [13][40]. Taneja et al (2013) found 
that household savings in California would be negligible due to 
the amount of energy required to freeze and control an 
actionable phase change material, and Taneja et al (2013) and 
Lakshmanan et al (2014) both find that the amount of savings 
experienced by a household depends substantially on the pricing 
tariff. In Denmark, research pilots suggest that the “micro-
payments” provided to users for participating in a load 
aggregation would be too low (1 to 5 euros/month) and energy 
cost savings would be too little (1 to seven euros/year) from 
buying a ‘controllable toolkit’. The absence of business potential 
in Denmark depended heavily on rate structure and other fees 
that make up a large part of the electricity prices (fixed costs 
being a large proportion of the electricity bill, rather than 
variable costs), in addition to refrigerators being much smaller 
and efficient than Californian refrigerators, and thus, requiring a 
larger population to take full advantage of virtual storage plants. 

Manual DR (manually changing set points, with a switch or 
controllers, for example), semi-automated DR (automating 
HVAC or other processes through the use of energy 
management control systems, with the remainder of a facility 
under ‘human control’), and fully automated DR (automation of 
an entire facility) are the three most popular ways to implement 
DR research pilots and field deployments. High data granularity 
through metering or advanced metering infrastructure (AMI) is 
essential for all DR implementations to ensure project 
performance and end-user compliance, financial settlement, and 
consumer satisfaction (by providing access to data), among other 
things [42][43][44]. Currently, most AMI deployments 
interphase with smart metering infrastructure through analog 
pulse or digital series outputs, as well as metering specific loads 
[43][44]. These data are for the most part sent back to an 
aggregator through existing communications infrastructure such 
as broadband or wifi [43][44]. With response times that can 
range from tens of minutes to milliseconds, DLC is an integral 
part of AMI kits used in pilots and research projects to ensure 
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compliance, as it would be nearly impossible for users to act 
within some of the shortest time frames [37]. Two-way 
communications have also been crucial as it allows toggling 
relays, sending scripts to BEMS, or attachment to a wide 
assortment of loads or industrial equipment [37]. Network 
Operation Centers (NOCs), or centralized control servers, host 
and organize DR and are widely used in commercialized 
implementations for initiating automatic dispatch notifications, 
remote control and monitoring of customer loads and 
generation, and coordination technicians in the field [37].  

In the United States, OpenADR is now almost always used as 
the communications data model of choice to ‘facilitate sending 
and receiving DR signals from a utility or independent system 
operator to electric customers’ [37][38]. While the OpenADR 
specification certainly facilitates data exchanges across a variety 
of stakeholders including consumers, utilities, regional 
transmission organizations (RTOs), and independent system 
operators (ISOs), it was primarily designed for high-bandwidth 
networks rather than low-power local area networks, making it 
perhaps less useful for smaller research tailored implementations 
or niche markets [37]. Once the system is in place, providing 
capacity payments, enabling meter access, facilitating accurate 
and transparent measurement verification procedures 
(establishing a baseline, for example), and encouraging 
aggregation are seen as industry best standards [37].  

Research pilots and field deployments are an important next 
step in realizing the implementation of the smart grid, and future 
research projects will have to further investigate important 
aspects of DR implementations including two-way 
communications costs and/or challenges, and the incorporation 
of behavior in DR (opening and closing of doors, for example), 
which plays an important role in TCL cycling. Another 
important challenge to consider is that AMI and smart metering 
were not designed with DR or other ancillary services in mind. 
In California (PG&E), smart meter infrastructure may receive or 
send several signals per day, with the transmission frequency 
depending on its position across a mesh network, and hence, 
does not provide all the functionality that DR aggregators would 
like when ensuring high standards for project implementation. 
Furthermore, DLC programs have historically faced end-user 
challenges including customers becoming frustrated with service 
interruptions, and often times leaving programs if they are called 
on too frequently, or not offered sufficient incentives to maintain 
long-term project participation [44]. Technology innovation in 
networking and DR technologies needs to consider many of 
these challenges.  

3 SYSTEM CONCEPT 
In January 2015 we used the Open Data Kit platform to survey 
230 micro-enterprises with large cooling loads in Managua. A 
pilot survey was tested with a small group of 20 micro-
enterprises, adjustments were made, and a full implementation 
was performed immediately afterwards. Our surveys and 
conversations with micro-enterprises (MEs) with large-cooling 
loads (for example: butcheries, chicken shops, mom & pop shops, 

milk and cheese shops) attempted to assess whether a micro-
level demand response implementation could be feasible in 
Nicaragua and touched upon different aspects of a micro-
enterprise’s business model: income and cost structures, energy 
related expenditures, daily, monthly and seasonal variations in 
consumption, perceptions on electric service reliability, 
perceptions on the quality of service provided by the utility, 
relationship with loads and appliances, and perceptions on 
income and micro-enterprise expenditures [45]  

The three most salient results from this survey included 
learning about (1) Voluntary Load Disruption: 161 respondents 
(71% of sample), were already implementing a refrigerator 
‘energy savings strategy’ by turning their refrigerator on or off 
at different times of the day, (2) Perceptions on Electricity Service 
Reliability: Despite 70% of the MEs experiencing frequent power 
outages, most were ‘satisfied’ (72%) with service reliability (our 
data, however, registered very low voltages across the 
geographic spectrum, affecting the performance of certain 
appliances such as refrigerators), suggesting a high level of 
acceptance towards loads (and service) being turned off at 
random, and (3) High Energy Costs and Perception of Electricity 
Related Expenditures: The MEs’ main cost concerns were related 
to high energy prices (US$ 0.33/kWh), with 60% finding their 
bills ‘difficult to pay’ (on a scale from 1-4: ‘easy’ to ‘very 
difficulty to pay’) [5]. The objective of the system is to turn 
everyday TCLs (refrigerators, in this instance) into grid-tied 
‘batteries’ that have the ability to store energy via latent heat, 
while still being able to perform their intended tasks. The system 
gathers open access high-resolution grid and weather data, as 
well as information from micro-level users such as micro-
enterprises and homes via surveys and a wireless sensor 
gateway. Actionable signals and personalized and useful snippets 
of ‘energy efficient’ information are developed in the cloud and 
are pushed back to users, but understanding the state of an 
aggregated ‘virtual storage plant’ (as described above) for DR 
simulation and control is the primary task of our design and 
implementation.  

With knowledge of previously implemented micro- level DR 
implementations, and taking into account characteristics and 
challenges particular to Nicaragua, a system was conceived that 
could scale across regions and levels of infrastructural 
development. We called this system a FlexBox. The FlexBox 
requires intelligence far beyond a power meter; its design must 
allow for the possibility of using information about household 
energy consumption, refrigerator energy consumption, 
refrigerator temperature, refrigerator usage, and room 
temperature to independently make decisions about turning the 
refrigerator on and off. Similarly, its design must also allow for 
the possibility of two-way communications with a load 
aggregator. These functionalities were not implemented in a 
vacuum and followed a set of design principles that fit the 
deployment and project context. The principles surrounding 
FlexBox design were guided by the needs of all the “users” 
including: 1) adaptability: the team of researchers (at the 
University of California and the Nicaraguan National 
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Engineering University) who will need to develop DR control 
laws, sensor configurations and management, and data collection 
and transmission functionalities, 2) modularity: simple 
maintenance being performed by a local enumerator without 
formal training in electronics meant that the system components 
could be put together and apart with ease, and 3) user needs and 
acceptance: the home or business owners must accept the 
technology, and at a later stage, receive information about 
household and load consumption. The second set of design 
principles came from our motivational research questions. A 
compromise had to be found between the availability of low- 
cost sensors and the variables of interest, including human 
behavior. This set of principles, while dominating the motivation 
of the project, is often the easiest to satisfy as it is sufficiently 
under the control of the researchers.  

 

 

 

 

 

 

 

 

 

 

Figure 1: FlexBox System Concept: The enumerator 
downloads new FlexBox software and new surveys from 
the cloud server. The enumerator also collects data from 
the FlexBox via Ethernet or Wi-Fi and sends it to the cloud 
server. A Huawei E3531 modem opens two-way 
communication streams between the FlexBox and the 
cloud server, uploading data and downloading updated 
control laws. Open access grid and weather data are stored 
in the cloud server as well as an archive of transmitted 
data. 

4 PROOF OF CONCEPT DEMONSTRATION 
The FlexBox is designed for ubiquitous TCL and household 
sensing, monitoring and load control. In this section we discuss 
the principles of operation, the hardware and software 
implementation.  

4.1 Principles of Operation 
Our research pilot in Managua (Nicaragua) consists of thirty 
FlexBoxes attached to twenty freezers (micro- enterprises) and 
ten refrigerators (households) and a centralized server that stores 
data, performs analyses, and provides control signals. Each 
FlexBox collects fridge inside temperature, humidity, TCL energy 
consumption, and total household energy consumption and 
stores it in a local database. Data is sent over 3G to a centralized 
server where it is merged with time stamped open access grid 
and weather data. Statistical and control scripts in the server can 
run simulations, and when necessary, actionable DR signals can 
be sent to participating TCLs to either be turned off or return to 
their normal cycling schedules. This central server also provides 
web-based tools to export data for off-line analysis, user energy 
reports, and intuitive visualizations that allow interested parties 
to easily understand the state of the overall system.  

4.2 Hardware Implementation 
The FlexBox is comprised of several components: a 
Raspberry Pi 2B, a custom Sensor Gateway Board, and a 

variety of wired and wireless sensors. Four USB ports on the 
Raspberry Pi are used to add and test wireless 
communications peripherals for local device 
communications using the Z-Wave protocol, Wi-Fi, flash 
backup storage, and a USB Huawei E3531 3G modem. An 
onboard storage microSD card on the Raspberry PI 2B 
makes data collection much simpler. If all other avenues fail 
to communicate the data to our server (an enumerator 
collecting data via Wi-Fi, or a 3G modem streaming data to 
our cloud server) the card can be mounted and read using a 
GNU/Linux based laptop. The modem is used to stream a 
subset of the data to our server, to control the FlexBox, and 
to test the quality of the GSM network. The Ethernet port 
provides a fail-safe communications channel with the 
device. 
 There are 3 radios (Wi-Fi, Z-wave, and GSM) and 7 
sensors used in each FlexBox (four wired and three wireless). 
The wired sensors (two DSB18B20 waterproof 
temperature sensors in the refrigerator, a DHT22 
household temperature/ambient sensor, and a 
magnetically actuated reed switch to monitor door 
openings) are connected to the Raspberry Pi via the 
custom Sensor Gateway board via a set of RJ11 modular 
jacks. An mPower Ubiquiti device is used for refrigerator 
monitoring and control and communicates via Wi-Fi. A n 
Aeotec Home Energy Meter monitors house power 
consumption (located at the electric service panel) and 
communicates to the FlexBox via Z-wave protocol. Several 
additions were made to the sensors and cables, including a 
small cage to surround the DS18B20s temperature sensors to 
minimize thermal contact conductance when inside the 
refrigerator as well as a thin telephone cable to extended 
the DS18B20s length (and allow for the refrigerator door to 
seal completely).  

4.3 Software Implementation 
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FlexBox processing and data storage is managed by the 
Raspberry PI 2B using the Raspbian Wheezy operating system. 
This platform provides a full operating system as the 
development environment which provides a richer feature set 
familiar to all researchers (UC Berkeley and UNI), which would 
not be the case if a simpler system were used, such as an mBed 
or Arduino microcontroller, which use a subset of C++. All 
software is implemented in Python and all data is stored in a 
PostgreSQL database. The Raspberry PI 2B uses the host access 
point daemon (hostapd) to act as a WiFi access point in order to 
communicate with the mPower Ubiquiti device (mPower). This 
access point also allows users to more easily connect to the 
FlexBox for diagnostics and data collection. 

Values from the switch sensor are directly accessible through 
the GPIO ports on the Raspberry PI 2B. The refrigerator 
temperature and room temperature and humidity sensors appear 
as character devices. I2C is used to communicate with the 
temperature sensors and a proprietary protocol is used to 
communicate with the room temperature and humidity 
sensor. An open-source repository called python-openzwave is 
leveraged in order to access voltage, current, power, power 
factor, and energy values from the Aeotec Home Energy Meter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: FlexBox Wireless Sensor Gateway Components. 

The python paramiko package is used to communicate with the 
mPower over WiFi through a secure shell (SSH) connection and 
collects refrigerator voltage, current, power, power factor, and 
energy values. In order to maintain stable connections and 
handle communication errors, the data collection scripts 
incorporate several layers of connection and process resets. 
First, a separate process is created for the data collection 
script of each sensor. This allows for independent sensor 
reads and stores and prevents the failure of a single 
sensor from interfering with the collection of other sensor 
values. While this system is capable of collecting data 
every 1-3 seconds (depending upon the sensor), the limited 
storage capacity of the microSD card requires a more 
limited collection scheme. The software stores data in the 
PostgreSQL database under two conditions: 1) it detects a 
change in the output value that is greater than a specified 
threshold, and 2) one minute has passed. This second 
condition ensures that the sensor is still functional, 
otherwise it would be difficult to discern between a broken 
sensor and a static sensor output.  

The sensors that communicate over wireless protocols 
(mPower, Aeotec Home Energy Meter) also have an 
additional layer of process handling to prevent excessive data 
loss caused by wireless connection issues. The Z-Wave 
network  and  connection  to  the  mPower  could  be  
very sporadic. Each hour, or if any communication error is 
caught, the entire system process is restarted. The mPower 
has an additional timeout for resetting the wireless network 
on the Raspberry Pi. If it cannot connect to the mPower, the 
wireless network is reset. After four retries, the Pi stops 
attempting to connect and waits for the process to be killed 
in the subsequent hour. This limit was imposed to allow for 
users to access the Raspberry Pi’s WiFi network even when 
the mPower is not functioning without having the script 
constantly resetting the connection. The Python Flask 
microframework is used to set up a web server on the 
Raspberry Pi. A web page on this server allows users to easily 
see the last several data points that were entered into the 
database from each sensor. This allows for quick 
diagnostics by the enumerator when first entering a 
household. Other configuration properties include setting 
a static IP address for the mPower, hard-coding the 
temperature sensor ids, and assigning unique hostnames 
to each FlexBox. These configurations add stability, reduce 
the possibility for error during system resets, and allow for 
easy identification and tracking when analyzing multiple 
households simultaneously. 
 Regarding communications, our approach seeks to 
evaluate two different network measurements: latency, 
and bandwidth. Latency represents the time interval in 
milliseconds between stimulation and response (how long 
it takes for data to get from one place to another), with 
bandwidth (bits per second) representing how much data 
can move across the network at a given time. Network 

Household Power Metering Load Metering  
& Control 

Weather Station 

RefrigeratorTemperature Sensors Shield Raspberry PI 2B 

Ambient Sensor Magnetic Switch 

               3G Modem 
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latency is evaluated through pinging: every 30 seconds, 6 
pings are sent which do a round trip to and from the 
server (FlexBox t o  c l o u l d  s e r v e r  t o  F l e x b o x ). 
Bandwidth is measured every 2 hours by opening a 
transmission control protocol (TCP) connection with the 
cloud server and streaming 3 megabits of randomly 
generated numbers from the FlexBox (to prevent 
compression by the network which would inflate our 
perceived bandwidth). Every four hours one row of data 
(sensor and meter readings) is sent to the cloud server 
to update system parameters. 

5 FIELD DEPLOYMENT 
In the summer of 2015 twenty micro-enterprises and ten 
households in different parts of Managua with similar social- 
demographic characteristics were selected at random from a 
sample of 230 micro-enterprises and households to receive a 
FlexBox. Five Huawei E3531 modems were installed to test 
network latency and bandwidth. This section presents an 
exploratory data analysis of the data collected to date, including 
TCL thermal parameter estimation and efficiencies, a brief 
communications network analysis, a cost breakdown, and a 
summary of field implementation challenges and opportunities 
that have been presented to date.  

5.1 Exploratory Data Analysis 
Normalized micro-level energy consumption (mean and/or 
median) can be clustered into 5 different daily load shapes 
(hourly data). The five different clustered daily load shapes (k-
shape) include (1) those that have their highest consumption in 
the middle of the day, (2) those with two peaks occurring in the 
middle of the day and in the evening, (3) those whose 
consumption increases consistently throughout the day, (4) those 
with only high consumption in the morning and at night, and (5) 
those that have scattered consumption throughout the day, but 
with the highest consumption being in the middle of the day. On 
average, households and micro-enterprises consume more 
energy on weekends versus weekends (mean: 16% greater energy 
consumption, median: 28% greater energy consumption using 
median). 

 

 
 

 

 

 

 

 

Figure 3: Load Shapes: Five different load shapes were 
identified when clustering load shapes by hourly mean or 
median. The pink load shape is the load shape that most 
resembles Nicaragua’s characteristic daily demand load 
shape. 

Correlating time of day with hourly room temperatures (°C), 
fridge inside temperatures (°C), refrigerator energy consumption 
(Wh), and household energy consumption (Wh) allowed us to 
see that there is both a room temperature and time dependence 
(with varying correlation strength) across our cluster (Figure 4). 
We observe a very weak negative relationship between inside 
refrigerator temperature and room temperature (Pearson r=-.06, 
N=16,000, p<.001), a moderate positive relationship between 
fridge energy consumption and room temperature (Spearman 
non-parametric r=-.43, N=10,000, p<.001), a moderate positive 
relationship between household energy consumption and room 
temperature (Spearman non- parametric r=-.45, N=16,000, 
p<.001), and a very weak relationship between room temperature 
and door openings (Spearman non-parametric r=-.16, N=16,000, 
p<.001).  

While these relationships may be relatively weak across the 
cluster, we observe great within cluster variability when 
exploring these relationships (Figure 5). For example, Figure 5 
depicts that 8 and 3 units experience moderate (0.4 ≤ r < 0.6; 
p<.001) and strong (0.6 ≤ r < 0.8; p<.001)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Controlled System Pilot Data Stream: Room 
ambient temperature plotted [A] fridge inside 
temperature, [B] fridge energy consumption, [C] 
household energy consumption, and [D] door openings. 
While the cluster only depicts weak to moderate 
correlations between room ambient temperature and other 
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Figure 3. Load Shapes: Five different load shapes were identified when 
clustering load shapes by hourly mean or median. The pink load shape is the 
load shape that most resembles Nicaragua’s characteristic daily demand load 
shape. 

A. Exploratory Data Analysis 
Normalized micro-level energy consumption (mean and/or 

median) can be clustered into 5 different daily load shapes 
(hourly data). The five different clustered daily load shapes 
(k-shape) include (1) those that have their highest 
consumption in the middle of the day, (2) those with two 
peaks occurring in the middle of the day and in the evening, 
(3) those whose consumption increases consistently 
throughout the day, (4) those with only high consumption in 
the morning and at night, and (5) those that have scattered 
consumption throughout the day, but with the highest 
consumption being in the middle of the day. On average, 
households and micro-enterprises consume more energy on 
weekdays versus weekends (mean: 16% greater energy 
consumption, median: 28% greater energy consumption). 

Correlating time of day with hourly room temperatures 
(°C), fridge inside temperatures (°C), refrigerator energy 
consumption (Wh), and household energy consumption (Wh) 
allowed us to see that there is both a room temperature and 
time dependence (with varying correlation strength) across our 
cluster (Figure 4). We observe a very weak negative 
relationship between inside refrigerator temperature and room 
temperature (Pearson r=-.06, N=16,000, p<.001), a moderate 
positive relationship between fridge energy consumption and 
room temperature (Spearman non-parametric r=-.43, 
N=10,000, p<.001), a moderate positive relationship between 
household energy consumption and room temperature 
(Spearman non-parametric r=-.45, N=16,000, p<.001), and a 
very weak relationship between room temperature and door 
openings (Spearman non-parametric r=-.16, N=16,000, 
p<.001).  

While these relationships may be relatively weak across 
the cluster, we observe great within cluster variability when 
exploring these relationships (Figure 5). For example, Figure 5 
depicts that 8 and 3 units experience moderate (0.4 ≤ r < 0.6; 
p<.001) and strong  (0.6 ≤ r < 0.8; p<.001)  correlations 
between room temperature and internal  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Controlled System Pilot Data Stream: Room ambient temperature 
plotted [A] fridge inside temperature, [B] fridge energy consumption, [C] 
household energy consumption, and [D] door openings. While the cluster only 
depicts weak to moderate correlations between room ambient temperature and 
other data streams, individual units experience stronger correlations between 
room ambient temperature and all other sensor data. 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5. Correlation between Room Temperature and FlexBox Sensor 
Data: The figure depicts the strength of the correlation between room 
temperature and all other sensor readings (door openings, fridge energy 
consumption, fridge inside temperature, and total household energy 
consumption) for all units. The size of a point represents the strength of the 
correlation and the color depicts a visual identifier for a specific unit 
(household or micro-enterprise). While the cluster data (all units) in Figure 4 
depicts only weak to moderate correlations, individual units experience 
stronger correlations between room ambient temperature and all other sensor 
data.  
 
refrigerator temperature respectively, 6 and 3 units experience 
moderate (p<.001) and strong (p<.001)  correlations between 
room temperature and house energy consumption respectively, 
and while the correlation between fridge energy consumption 
and room temperature is positive, this relationship is only 

[A] [B] 

[C] [D] 
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data streams, individual units experience stronger 
correlations between room ambient temperature and all 
other sensor data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5: Correlation between Room Temperature and 
FlexBox Sensor Data: The figure depicts the strength of the 
correlation between room temperature and all other 
sensor readings (door openings, fridge energy 
consumption, fridge inside temperature, and total 
household energy consumption) for all units. The size of a 
point represents the strength of the correlation and the color 
depicts a visual identifier for a specific unit (household or 
micro-enterprise). While the cluster data (all units) in 
Figure 4 depicts only weak to moderate correlations, 
individual units experience stronger correlations between 
room ambient temperature and all other sensor data.  
 

moderate (p<.001) and strong (p<.001) correlations between 
room temperature and house energy consumption respectively, 
and while the correlation between fridge energy consumption 
and room temperature is positive, this relationship is only found 
to be moderate and strong in a few households (2 and 1 units 
respectively; p<.001).  

The spread in the strength of correlation between ambient 
room temperature and fridge inside temperature and fridge 
energy consumption suggests that there is a panoply of user 
behaviors that are driving the system (Figure 5). For example, 
some units might unplug their fridge when room ambient 
temperature is very high, whereas others might leave their 
appliance ‘on’, with the fridge using more energy to preserve (or 
reduce its internal temperature) during that time. 

Similarly a strong positive correlation between fridge inside 
temperature and room ambient temperature could suggest that 
users unplug their fridge during the hottest parts of the day, and 
a negative strong correlation could suggest that these are the 

times of the day when users actually ‘plug’ their refrigerator 
(and consequently, the time of the day during which the 
refrigerator uses most of its energy). The correlation between 
total household energy consumption and room ambient 
temperature suggests that while there are a few households that 
increase their consumption at higher temperatures, there are 
also others that modify their behavior so as to reduce their 
consumption (for example, turn several freezers and 
refrigerators off). There are many more insights from these data, 
including the opportunity to target energy efficiency thermal 
insulation for refrigerators in certain units, as well as the 
development of detailed energy reports.  
 

5.2 TCL Parameter EDA 
There are several key parameters for determining the technical 
resource potential of thermostatically controlled loads and for 
building more accurate control algorithms for large-scale TCL 
aggregations. Room temperature, fridge inside temperature (of a 
room, or inside a refrigerator, for example), power consumption, 
and TCL characteristics (resistance, capacitance, and wall 
thickness, for example) are all used for the design of a smart 
controller. It has also been suggested that large-scale TCL 
aggregations of virtual energy storage can be represented 
through both their energy and power capacity [46]. To define the 
energy capacity (the maximum amount of energy that can be 
stored) and the power capacity (the full power range of an 
analogous storage device) several parameters are needed 
including: h (the amount of time it takes a TCL to traverse its 
deadband in ON mode), dead-band width (°C), temperature set 
points (°C), thermal resistance (°C/kWh), thermal capacitance 
(kWh/°C), coefficient of performance (COP), and power 
consumption (kW). While TCL models in the literature allow 
room temperature to vary when modeling air conditioners and 
heat pumps, room temperature remains fixed when modeling 
energy and power capacity in refrigerators. Though these 
dynamics may vary across regions and study sites, a fixed room 
temperature also means that a refrigerator’s duty cycle remains 
constant, and so do the power and energy capacities, as well as 
the mean annual energy consumption [46].  

When comparing room temperature and humidity inside 
households and micro-enterprises against ambient weather 
station data, we found that houses and micro-enterprises directly 
experienced ambient temperatures, and often experienced hotter 
temperatures during the hottest part of the days due to the 
absence of reflective or insulating house materials infrastructure. 
During the early morning (0-6 am) all except two houses 
experience lower temperatures than the ambient temperature 
weather station, but this changes at 6 am when approximately 
half of the households experience higher temperatures than the 
weather station. While room temperature allows us to 
understand intra-hourly and intra day temporal variability, and 
temperature variability is well correlated across our weather 
station and all units, there was a wide spread of room 
temperature across all units (4°C). Poor thermal insulation could 
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pose significant problems not only for household and city-wide 
energy efficiency programs, but could also significantly affect 
city dwellers health [47]. Our data suggests that not only does 
room temperature vary significantly during the day, but also that 
the warm temperature extremes are experienced significantly by 
loads and people in houses and micro-enterprises. 

On average, TCL consumption is greatest during the middle 
day when it is the hottest and when households experience the 
majority of their door openings. Figure 8.a depicts normalized 
data (0-1) for all units to compare energy usage over time 
throughout the study period. Manufacturer information from 
refrigeration units in the field labeled the temperature set points 
of the different freezer and refrigeration units to range between -
20°C and 5°C. Field data suggests, however, that the units usually 
oscillated between -10°C and could reach up to 35°C (Figure 6, 
Table 1). This deviation could be a result of appliance losses, and 
behavioral components which include the opening and closing of 
doors and the temporary unplugging of TCLs most units engage 
in.  

Furthermore, we find that the duty cycle (the ratio of time it 
takes for a refrigerator to traverse its dead-band in an on state 
vs. total time in compressor on and off states) fluctuates during 
the day. Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage during 
the middle of the day (when it’s hottest and when there is more 
activity) than other parts of the day. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
Figure 6: Internal temperature of household and micro-
enterprise TCLS: The temperature range of households is 
similar (top), while micro-enterprise freezers display a 
wider temperature range, ranging from -10°C to room 
temperature (bottom).  
 

Evidence from these field data diverge from previous TCL 
modeling assumptions that suggest that the duty cycle (and 
energy and power capacities) is fixed throughout the day. We 
also compare the coefficient of performance, which was 
measured in an experimental setting at UC Berkeley, to an 
efficiency performance index, which was calculated from data. 
We find that while the experimental COP ranged between 0.01 
and 0.03 and stayed fairly constant throughout the day (with 
minimal heat or behavioral disturbances), the efficiency of 
performance index (EPI) observed in the field ranged drastically 
between 0.0045 (minimum) and 18 (maximum). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Room temperature of household and micro-
enterprises (red) vs. ambient weather station data (blue): 
Houses and micro-enterprises directly experience the 
ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and 
night, the weather station experiences higher 
temperatures than the households and micro- enterprises. 
 
While it would seem like the EPI index is consistent across field 
units (Fig 8), we find that the performance efficiency of the 
refrigerator (the amount of work required to remove heat from a 
cold reservoir) varies within the day. More active and hotter 
times of the day observe lower EPI values than other days. The 
rated power of these appliances ranged from 0.1 to 2.2 kW 
according to the manufacturer label and size; this would result in 
a mean annual consumption range between 280 and 6000 kWh. 
Our field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings from 
our field data and experiment could be used to better inform the 
modeling of TCLs for ancillary services as theoretical models 
usually assume constant duty cycles, energy and power 
capacities and performance efficiencies.  
 

5.3 Communications Network EDA 
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found to be moderate and strong in a few households (2 and 1 
units respectively; p<.001).  

The spread in the strength of correlation between 
ambient room temperature and fridge inside temperature and 
fridge energy consumption suggests that there is a panoply of 
user behaviors that are driving the system (Figure 5). For 
example, some units might unplug their fridge when room 
ambient temperature is very high, whereas others might leave 
their appliance ‘on’, with the fridge using more energy to 
preserve (or reduce its internal temperature) during that time. 
Similarly a strong positive correlation between fridge inside 
temperature and room ambient temperature could suggest that 
users unplug their fridge during the hottest parts of the day, 
and a negative strong correlation could suggest that these are 
the times of the day when users actually ‘plug’ their 
refrigerator (and consequently, the time of the day during 
which the refrigerator uses most of its energy). The correlation 
between total household energy consumption and room 
ambient temperature suggests that while there are a few 
households that increase their consumption at higher 
temperatures, there are also others that modify their behavior 
so as to reduce their consumption (for example, turn several 
freezers and refrigerators off). There are many more insights 
from these data, including the opportunity to target energy 
efficiency thermal insulation for refrigerators in certain units, 
as well as the development of detailed energy reports. 
 

B. TCL Parameter EDA 
There are several key parameters for determining the 

technical resource potential of thermostatically controlled 
loads and for building more accurate control algorithms for 
large-scale TCL aggregations. Room temperature, fridge 
inside temperature (of a room, or inside a refrigerator, for 
example), power consumption, and TCL characteristics 
(resistance, capacitance, and wall thickness, for example) are 
all used for the design of a smart controller. It has also been 
suggested that large-scale TCL aggregations of virtual energy 
storage can be represented through both their energy and 
power capacity [46]. To define the energy capacity (the 
maximum amount of energy that can be stored) and the power 
capacity (the full power range of an analogous storage device) 
several parameters are needed including: h (the amount of 
time it takes a TCL to traverse its deadband in ON mode), 
dead-band width (°C), temperature set points (°C), thermal 
resistance (°C/kWh), thermal capacitance (kWh/°C), 
coefficient of performance (COP), and power consumption 
(kW). While TCL models in the literature allow room 
temperature to vary when modeling air conditioners and heat 
pumps, room temperature remains fixed when modeling 
energy and power capacity in refrigerators. Though these 
dynamics may vary across regions and study sites, a fixed 
room temperature also means that a refrigerator’s duty cycle 
remains constant, and so do the power and energy capacities, 
as well as the mean annual energy consumption [46].  

When comparing room temperature and humidity inside 
households and micro-enterprises against ambient weather 
station data, we found that houses and micro-enterprises 

directly experienced ambient temperatures, and often 
experienced hotter temperatures during the hottest part of the 
days due to the absence of reflective or insulating house 
materials infrastructure.   During the early morning (0-6 am) 
all except two houses experience lower temperatures than the 
ambient temperature weather station, but this changes at 6 am 
when approximately half of the households experience higher 
temperatures than the weather station. While room 
temperature allows us to understand intra-hourly and intra day 
temporal variability, and temperature variability is well 
correlated across our weather station and all units, there was a 
wide spread of room temperature across all units (4°C). Poor 
thermal insulation could pose significant problems not only 
for household and city-wide energy efficiency programs, but 
could also significantly affect city dwellers health [47]. Our 
data suggests that not only does room temperature vary 
significantly during the day, but also that the warm 
temperature extremes are experienced significantly by loads 
and people in houses and micro-enterprises. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Internal temperature of household and micro-enterprise TCLS: 
The temperature range of households is similar (top), while micro-enterprise 
freezers display a wider temperature range, ranging from -10°C to room 
temperature (bottom). 
 
On average, TCL consumption is greatest during the middle 
day when it is the hottest and when households experience the 
majority of their door openings. Figure 8.a depicts normalized 
data (0-1) for all units to compare energy usage over time 
throughout the study period.  Manufacturer information from 
refrigeration units in the field labeled the temperature set 
points of the different freezer and refrigeration units to range 
between -20°C and 5°C. Field data suggests, however, that the 
units usually oscillated between -10°C and could reach up to 
35°C (Figure 6, Table 1). This deviation could be a result of 
appliance losses, and behavioral components which include 
the opening and closing of doors and the temporary  
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Figure 7. Room temperature of household and micro-enterprises (red) vs. 
ambient weather station data (blue): Houses and micro-enterprises directly 
experience the ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and night, the weather 
station experiences higher temperatures than the households and micro-
enterprises.  
 
unplugging of TCLs most units engage in. 

Furthermore, we find that the duty cycle (the ratio of time 
it takes for a refrigerator to traverse its dead-band in an on 
state vs. total time in compressor on and off states) fluctuates 
during the day.  Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage 
during the middle of the day (when it’s hottest and when there 
is more activity) than other parts of the day. Evidence from 
these field data diverge from previous TCL modeling 
assumptions that suggest that the duty cycle (and energy and 
power capacities) is fixed throughout the day.   

We also compare the coefficient of performance, which 
was measured in an experimental setting at UC Berkeley, to 
an efficiency performance index, which was calculated from 
data. We find that while the experimental COP ranged 
between 0.01 and 0.03 and stayed fairly constant throughout 
the day (with minimal heat or behavioral disturbances), the 
efficiency of performance index (EPI) observed in the field 
ranged drastically between 0.0045 (minimum) and 18 
(maximum). While it would seem like the EPI index is 
consistent across field units (Fig 8), we find that the 
performance efficiency of the refrigerator (the amount of work 
required to remove heat from a cold reservoir) varies within 
the day. More active and hotter times of the day observe lower 
EPI values than other days. The rated power of these 
appliances ranged from 0.1 to 2.2 kW according to the 
manufacturer label and size; this would result in a mean 
annual consumption range between 280 and 6000 kWh. Our 
field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings 
from our field data and experiment could be used to better 
inform the modeling of TCLs for ancillary services as 
theoretical models usually assume constant duty cycles, 
energy and power capacities and performance efficiencies.  

 
 

 
 
 
 
 
 
 
 

 
 

Table 1. Field Data TCL Thermal Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Normalized TCL Energy Consumption by Unit [top] and TCL 
Efficiency Performance Index for all Units [bottom]: [Top] We observe 
TCL energy consumption to be, on average, higher in the middle of the day 
than other parts of the day, and [Bottom] we find the efficiency performance 
index (the ratio between the work that is required to remove heat from a 
reservoir and the heat removed from a reservoir) also varies during the day, 
and is worst in the middle of the day when it is hottest and when the TCL 
experiences most activity.  
 

C. Communications Network EDA 
As part of a test for the reliability and capacity of the 
communications network, we installed five 3G Huawei E3531 

Parameter Symbol  
(Units)

  Mean (SD: Min -- Max)

Ambient temperature θa (°C) 30 (3: 10 -- 41)
Dead-band width δ (°C) 9 (4: -10 -- 35)
Temperature set point1 θset (°C) -20 -- 5
Duty cycle D (-) 0.52 (0.31: 0.1 -- 0.9)
Coefficient of performance2 η (-) 0.01 - 0.03
Efficiency performance index η.e (-) 1.8 (2.4: .0045 - 18)
Power consumption1 P (kW) 0.1 -- 2.2
Mean Annual Energy Consumption per TCL1 MAEC (kWh) 280 -- 6000 
Actual Mean Annual Energy Consumption per TCL AMAEC (kWh) 1400

[1] From product details found in the field and from local refrigerator and freezer providers.

[3] The rest of the data was obtained from the field.

[2] From controlled laboratory experiments.The literature suggests that the COP ranges between 
1.5 and 2.5, we did not observe this in our controlled experiment. COP is a ratio of Qc (heat 
removed from a cold reservoir) over Wref  (the work input required to remove heat from the cold 
reseroir). Experimentally, we calculated the COP for a freezer and refrigerator that were empty, but 
on the field we assumed freezers and refrigerators to be 3/4 full. That is, we used the heat capacity 
of air and water to calculate the efficiency performance index for our field data.
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As part of a test for the reliability and capacity of the 
communications network, we installed five 3G Huawei E3531 
modems in both households and micro-enterprises. Monthly 1GB 
data plans were purchased for each modem and two tests were 
written and implemented to test network latency and bandwidth. 
Latency refers to the base overhead of establishing and 

Table 1: Field Data TCL Thermal Parameters 

Parameter Units Mean (SD: Min -- Max) 

Ambient 
Temperature 

Celsius 30 (3: 10 -- 41) 

Dead-band width Celsius 9 (4: 10 -- 35) 

Temperature set 
point1 

Celsius -20 -- 5 

Duty cycle - 0.52 (0.31: 0.1 -- 0.9) 

Coefficient of 
Performance2 

- 0.01 -- 0.03 

Efficiency 
performance 
index 

- 1.8 (2.4: 0.0045 -- 18) 

Power 
consumption1 

kW 0.1 -- 2.2 

Mean Annual 
Energy 
Consumption per 
TCL1 

kWh 280 -- 6000 

Actual Mean 
Energy 
Consumption per 
TCL 

kWh 1400 

 
[1] From product details found in the field and from local 
refrigerator and freezer providers 
[2] From controlled laboratory experiments. The literature 
suggests that the COP ranges between 1.5 and 2.5, but we did not 
see this in our experiment. COP is a ratio of Qc (heat removed 
from a cold reservoir) over Wref (the work input required to 
remove heat from a cold reservoir). Experimentally, we 
calculated the COP for a freezer and refrigerator were empty, but 
on the field we assumed freezers and refrigerators to be ¾ full. 
That is, we used the heat capacity of air and water to calculate 
the efficiency performance index for our field data. 
[3] The rest of the data was obtained from the field. 
 
 
responding to a connection request. In this context, it measures 
the amount it takes for the FlexBox to create a data package, 
send it to the server, the server receiving it and the server 
sending it back to the FlexBox. We measured latency through 
pinging: every 30 seconds, 6 pings were sent from the FlexBox to 
the server, and then returned back to the FlexBox. With regards 
to DR control purposes, latency is incredibly important as we 
want DR control signals to travel fast through the network. 
Modems can take anywhere between millisecond to tens of 

seconds to establish a connection and send one packet of data 
changing what service we can reliably provide in ancillary 
services or spot markets.  

Bandwidth refers to the speed at which data flows through 
the network after a connection has been established and is 
usually taken into account when considering bulk data 
transmission. We measured bandwidth by opening a 
transmission control protocol (TCP) connection between the 
FlexBox and the server and transmitting 3 megabits of randomly 
generated numbers. For DR control purposes, control signals are 
generally very small and communication time is dominated by 
latency, so although we measured both, latency is considered to 
be a more determining factor of the ancillary services that could 
be provided by TCLs within a particular communications 
network.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Normalized TCL Energy Consumption by Unit 
[top] and TCL Efficiency Performance Index for all Units 
[bottom]: [Top] We observe TCL energy consumption to 
be, on average, higher in the middle of the day than other 
parts of the day, and [Bottom] we find the efficiency 
performance index (the ratio between the work that is 
required to remove heat from a reservoir and the heat 
removed from a reservoir) also varies during the day, and 
is worst in the middle of the day when it is hottest and 
when the TCL experiences most activity. 

In our tests, and in the event that the network failed and 
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Figure 7. Room temperature of household and micro-enterprises (red) vs. 
ambient weather station data (blue): Houses and micro-enterprises directly 
experience the ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and night, the weather 
station experiences higher temperatures than the households and micro-
enterprises.  
 
unplugging of TCLs most units engage in. 

Furthermore, we find that the duty cycle (the ratio of time 
it takes for a refrigerator to traverse its dead-band in an on 
state vs. total time in compressor on and off states) fluctuates 
during the day.  Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage 
during the middle of the day (when it’s hottest and when there 
is more activity) than other parts of the day. Evidence from 
these field data diverge from previous TCL modeling 
assumptions that suggest that the duty cycle (and energy and 
power capacities) is fixed throughout the day.   

We also compare the coefficient of performance, which 
was measured in an experimental setting at UC Berkeley, to 
an efficiency performance index, which was calculated from 
data. We find that while the experimental COP ranged 
between 0.01 and 0.03 and stayed fairly constant throughout 
the day (with minimal heat or behavioral disturbances), the 
efficiency of performance index (EPI) observed in the field 
ranged drastically between 0.0045 (minimum) and 18 
(maximum). While it would seem like the EPI index is 
consistent across field units (Fig 8), we find that the 
performance efficiency of the refrigerator (the amount of work 
required to remove heat from a cold reservoir) varies within 
the day. More active and hotter times of the day observe lower 
EPI values than other days. The rated power of these 
appliances ranged from 0.1 to 2.2 kW according to the 
manufacturer label and size; this would result in a mean 
annual consumption range between 280 and 6000 kWh. Our 
field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings 
from our field data and experiment could be used to better 
inform the modeling of TCLs for ancillary services as 
theoretical models usually assume constant duty cycles, 
energy and power capacities and performance efficiencies.  

 
 

 
 
 
 
 
 
 
 

 
 

Table 1. Field Data TCL Thermal Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Normalized TCL Energy Consumption by Unit [top] and TCL 
Efficiency Performance Index for all Units [bottom]: [Top] We observe 
TCL energy consumption to be, on average, higher in the middle of the day 
than other parts of the day, and [Bottom] we find the efficiency performance 
index (the ratio between the work that is required to remove heat from a 
reservoir and the heat removed from a reservoir) also varies during the day, 
and is worst in the middle of the day when it is hottest and when the TCL 
experiences most activity.  
 

C. Communications Network EDA 
As part of a test for the reliability and capacity of the 
communications network, we installed five 3G Huawei E3531 

Parameter Symbol  
(Units)

  Mean (SD: Min -- Max)

Ambient temperature θa (°C) 30 (3: 10 -- 41)
Dead-band width δ (°C) 9 (4: -10 -- 35)
Temperature set point1 θset (°C) -20 -- 5
Duty cycle D (-) 0.52 (0.31: 0.1 -- 0.9)
Coefficient of performance2 η (-) 0.01 - 0.03
Efficiency performance index η.e (-) 1.8 (2.4: .0045 - 18)
Power consumption1 P (kW) 0.1 -- 2.2
Mean Annual Energy Consumption per TCL1 MAEC (kWh) 280 -- 6000 
Actual Mean Annual Energy Consumption per TCL AMAEC (kWh) 1400

[1] From product details found in the field and from local refrigerator and freezer providers.

[3] The rest of the data was obtained from the field.

[2] From controlled laboratory experiments.The literature suggests that the COP ranges between 
1.5 and 2.5, we did not observe this in our controlled experiment. COP is a ratio of Qc (heat 
removed from a cold reservoir) over Wref  (the work input required to remove heat from the cold 
reseroir). Experimentally, we calculated the COP for a freezer and refrigerator that were empty, but 
on the field we assumed freezers and refrigerators to be 3/4 full. That is, we used the heat capacity 
of air and water to calculate the efficiency performance index for our field data.
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latency and bandwidth data tests could not be sent, the tests 
were stored as failures in the FlexBox. Once the network was 
restored, data was sent to the server and analyzed to understand 
how many failures occurred based on how many sequence 
numbers were missing (as well as to calculate how much time 
had elapsed between successful attempts). Each latency and 
bandwidth test had 6 pings, and the maximum and average 
values described below refer to the maximum and average value 
within the 6 pings that occurred within each of our tests. A non-
parametric Kolmogorov-Smirnov test was used to compare the 
latency distributions across our five samples (for the average and 
maximum latency length) and found them to be all statistically 
significant different from each other (p≤0.001; with the null 
hypothesis being that the two distributions being compared are 
drawn from the same distribution). The mean of the average 
latency is 642 milliseconds (sd: 185 milliseconds) across all 
devices (Figure 10.A) and the mean of the maximum latency 
across all devices is 945 milliseconds (sd: 415 milliseconds) with 
the maximum latency value reaching 38,000 milliseconds. We 
also evaluated the average latency across all devices for every 
hour of the day (Figure 10.A) and found the network to be faster, 
on average, between 5 am and 12 pm (880 milliseconds) than 
other parts of the day. Distance between devices does not seem 
to be a determining factor of latency as devices that are 
relatively close together were found to be as different to each 
other compared to devices that were further away. The latency 
tests show great variability among each other and throughout 
the day despite the fact that they are all connected to the same 
network (Claro 3G), are pinging the same server, are using 
thesame technology (Huawei E3531) and run the same software. 
We also analyzed network dropped packets and evaluated both 
the number of events (binary: 1 or 0) as well as the duration of 
the event (seconds: 1*seconds elapsed). Because our dropped 
packet events have both known average rates and are assumed 
to occur independently of the time since the last event, we 
assumed a Poisson distribution to express the probability of a 
dropped packet occurring within a fixed time interval. Similarly, 
we used an exponential distribution to describe the time between 
dropped packets (inter-arrival times of dropped packets in the 
Poisson process).  

Throughout the network (Figure 9.B) each device had a 
different distribution for dropped packets, and therefore also a 
different lambda value (Figure 9.A). For all dropped packet 
events, the mean duration before reestablishing connection was 
267 seconds (~ 5 minutes) with a 352 seconds standard deviation 
(min: 60 seconds, max: 206 minutes). These values are deceiving, 
however, because the distribution is skewed due to several 
extreme outliers shifting the mean to the right. Removing these 
outliers depicted that the duration of events follows an 
exponential distribution with a mean of 258 seconds (~4 
minutes). Without outliers the median value is 180 seconds and 
the most frequent value is 60 seconds. For all dropped packet 
events the mean interval time between events was 106 seconds 
with a standard deviation of 505 seconds. Without outliers, the 
mean time between events is 50 seconds (median is 46 seconds) 
with a standard deviation of 54 seconds.  

6 CONCLUSIONS 

There are several findings from our system implementation that 
can inform how theoretical models could incorporate data from 
wireless sensor gateways in the future: (1) the use of surveys and 
baseline data collection could be used for more realistic 
assumption building before modeling begins, (2) while some 
recent work has begun to calculate the uncertainty resource  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Latency Hourly Variability: [A] Hourly average 
latency variability, and [B] approximate distribution of 
these devices across Managua. is worst in the middle of the 
day when it is hottest and when the TCL experiences most 
activity. 

potential for demand response, little attention has been placed 
on how user behavior increases the energy and temperature 
uncertainty of DR resource availability, (3) control algorithms 
are usually top-down with a load aggregator assuming user and 
load behavior and consumption patterns; we argue that a more 
holistic modeling approach could be the development of bottom-
up – top-down models that incorporate behavior and appliance 
efficiencies in model building, (4) communication networks and 
enabling systems (such as our FlexBox) are usually discussed in 
the abstract, yet, the types of ancillary services that can be 
provided at the micro-level are conditional upon the capabilities 
of a specific system or technology, and (5) research on DR 
communication protocols are likely to affect not only what 
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Figure 10. Latency Hourly Variability: [A] Hourly average latency 
variability, and [B] approximate distribution of these devices across Managua.  
 
Throughout the network (Figure 10.B) each device had a 
different distribution for dropped packets, and therefore also a 
different lambda value (Figure 9.A). For all dropped packet 
events, the mean duration before reestablishing connection 
was 267 seconds (~ 5 minutes) with a 352 seconds standard 
deviation (min: 60 seconds, max: 206 minutes). These values 
are deceiving, however, because the distribution is skewed due 
to several extreme outliers shifting the mean to the right. 
Removing these outliers depicted that the duration of events 
follows an exponential distribution with a mean of 258 
seconds (~4 minutes). Without outliers the median value is 
180 seconds and the most frequent value is 60 seconds. For all 
dropped packet events the mean interval time between events 
was 106 seconds with a standard deviation of 505 seconds. 
Without outliers, the mean time between events is 50 seconds 
(median is 46 seconds) with a standard deviation of 54 
seconds.  

VI. CONCLUSION 
There are several findings from our system implementation 
that can inform how theoretical models could incorporate data 
from wireless sensor gateways in the future: (1) the use of 
surveys and baseline data collection could be used for more 
realistic assumption building before modeling begins, (2) 
while some recent work has begun to calculate the uncertainty 

resource potential for demand response, little attention has 
been placed on how user behavior increases the energy and 
temperature uncertainty of DR resource availability, (3) 
control algorithms are usually top-down with a load 
aggregator assuming user and load behavior and consumption 
patterns;  we argue that a more holistic modeling approach 
could be the development of bottom-up – top-down models 
that incorporate behavior and appliance efficiencies in model 
building, (4) communication networks and enabling systems 
(such as our FlexBox) are usually discussed in the abstract, 
yet, the types of ancillary services that can be provided at the 
micro-level are conditional upon the capabilities of a specific 
system or technology, and (5) research on DR communication 
protocols are likely to affect not only what different services 
can be provided but also the design and cost-effectiveness of 
the enabling system itself. The communications network’ 
exploratory data analysis suggested that DR faces several 
communication challenges ahead which include a large 
discrepancy in the spatial quality of communications service, a 
high frequency of dropped packets across the network, and a 
high frequency in the difficulty to reestablish a connection.  
Future iterations of this work will involve the reduction in size 
of the FlexBox, the design of a system that measures 
temperature less intrusively, and a more inconspicuous way to 
measure load power consumption. In addition, future work 
will investigate what the minimum level of grid sensing is to 
recover full state information from a micro-enterprise or a 
household.  

Acknowledgements: 
CONACYT-UCMEXUS, the National Geographic Energy 
Challenge, the Berkeley Energy and Climate Institute, and UC 
Berkeley’s Development Impact Lab partly funded this research.  
Nicaragua’s National Engineering University, and Nicaragua’s 
Ministry of Energy and Mines were institutions that actively 
supported the pilot implementation. We would like to thank Duncan 
Callaway, Emerald Ferreira-Yang, Jae Bin Ju, Odaly Maria Molina 
Altamirano, Jorli Jarqui, and Maria Virginia Moncada for valuable 
conversations and insights during the design and implementation of 
this research project. 

REFERENCES 

[1] D. Ponce de Leon Barido, J. Johnston, M. Moncada, D. Callaway, D. M 
Kammen, “Evidence and Future Scenarios of a low-carbon transition in 
Central America: A Case Study in Nicaragua”, Environ. Res. Lett 10 
(2015) 104002 

[2] International Renewable Energy Agency, Working Together to Build an 
East and Southern African Clean Energy Corridor . 2014. 

[3] Bloomberg New Energy Finance. New Energy Outlook 2015. 
[4] United Nations Human Settlement Programme State of the World’s 

Cities. New York, NY: Routledge, 2013. 
[5] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An Information 

Framework for Creating a Smart City Through Internet of Things”, 
IEEE IoT, vol. 1, pp 112-121, April 2014 

[6] GSMA Real time tracker: https://gsmaintelligence.com/  
[7] ITU Committed to connecting the world http://www.itu.int/en/ITU-

D/Statistics/Pages/stat/default.aspx 
[8] GSMA Digital Inclusion Report 2014 

http://www.gsma.com/mobilefordevelopment/wp-
content/uploads/2014/11/GSMA_Digital-Inclusion-
Report_Web_Singles_2.pdf  

Approximate Location of Devices across 
Managua 

A 

B 



IoTDI’17, April 2017, Pittsburgh, Pennsylvania USA D. Ponce de Leon Barido et al. 
 

12 

 
 

different services can be provided but also the design and cost-
effectiveness of the enabling system itself. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10: Poisson and Exponential Distribution 
Characterizing: Probability of number of dropped events 
per hour [A], distribution of event duration in seconds [B], 
and time interval between events [C]. Panels [B] and [C] 
depict the distributions without outliers and fitted with an 
exponential distribution (red line). 

The communications network’ exploratory data analysis 
suggested that DR faces several communication challenges ahead 
which include a large discrepancy in the spatial quality of 
communications service, a high frequency of dropped packets 
across the network, and a high frequency in the difficulty to 
reestablish a connection.  Future iterations of this work will 
involve the reduction in size of the FlexBox, the design of a 
system that measures temperature less intrusively, and a more 

inconspicuous way to measure load power consumption. In 
addition, future work will investigate the minimum level of grid 
sensing required to recover full state information from a micro-
enterprise or household. 
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modems in both households and micro-enterprises. Monthly 
1GB data plans were purchased for each modem and two tests 
were written and implemented to test network latency and 
bandwidth. Latency refers to the base overhead of establishing 
and responding to a connection request. In this context, it 
measures the amount it takes for the FlexBox to create a data 
package, send it to the server, the server receiving it and the 
server sending it back to the FlexBox. We measured latency 
through pinging: every 30 seconds, 6 pings were sent from the 
FlexBox to the server, and then returned back to the FlexBox. 
With regards to DR control purposes, latency is incredibly 
important as we want DR control signals to travel fast through 
the network. Modems can take anywhere between millisecond 
to tens of seconds to establish a connection and send one 
packet of data changing what service we can reliably provide 
in ancillary services or spot markets. 

Bandwidth refers to the speed at which data flows 
through the network after a connection has been established 
and is usually taken into account when considering bulk data 
transmission. We measured bandwidth by opening a 
transmission control protocol (TCP) connection between the 
FlexBox and the server and transmitting 3 megabits of 
randomly generated numbers. For DR control purposes, 
control signals are generally very small and communication 
time is dominated by latency, so although we measured both, 
latency is considered to be a more determining factor of the 
ancillary services that could be provided by TCLs within a 
particular communications network. 

In our tests, and in the event that the network failed 
and latency and bandwidth data tests could not be sent, the 
tests were stored as failures in the FlexBox. Once the network 
was restored, data was sent to the server and analyzed to 
understand how many failures occurred based on how many 
sequence numbers were missing (as well as to calculate how 
much time had elapsed between successful attempts). Each 
latency and bandwidth test had 6 pings, and the maximum and 
average values described below refer to the maximum and 
average value within the 6 pings that occurred within each of 
our tests. A non-parametric Kolmogorov-Smirnov test was 
used to compare the latency distributions across our five 
samples (for the average and maximum latency length) and 
found them to be all statistically significant different from 
each other (p≤0.001; with the null hypothesis being that the 
two distributions being compared are drawn from the same 
distribution). The mean of the average latency is 642 
milliseconds (sd: 185 milliseconds) across all devices (Figure 
9.A) and the mean of the maximum latency across all devices 
is 945 milliseconds (sd: 415 milliseconds) with the maximum 
latency value reaching 38,000 milliseconds. We also evaluated 
the average latency across all devices for every hour of the 
day (Figure 10.A) and found the network to be faster, on 
average, between 5 am and 12 pm (880 milliseconds) than 
other parts of the day. Distance between devices does not 
seem to be a determining factor of latency as devices that are 
relatively close together were found to be as different to each 
other compared to devices that were further away. The latency 
tests show great variability among each other and throughout 

the day despite the fact that they are all connected to the same 
network (Claro 3G), are pinging the same server, are using the 
same technology (Huawei E3531) and run the same software.  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Poisson and Exponential Distribution Characterizing: 
Probability of number of dropped events per hour [A], distribution of event 
duration in seconds [B], and time interval between events [C].  Panels [B] and 
[C] depict the distributions without outliers and fitted with an exponential 
distribution (red line). 
 

We also analyzed network dropped packets and 
evaluated both the number of events (binary: 1 or 0) as well as 
the duration of the event (seconds: 1*seconds elapsed). 
Because our dropped packet events have both known average 
rates and are assumed to occur independently of the time since 
the last event, we assumed a Poisson distribution to express 
the probability of a dropped packet occurring within a fixed 
time interval. Similarly, we used an exponential distribution to 
describe the time between dropped packets (inter-arrival times 
of dropped packets in the Poisson process).  
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