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Abstract 
 

Forecasts of electricity demand suggest that most growth will occur in the global south. Furthermore, it is 
expected that seven out of ten people will be living in cities by 2050. Energy efficiency will have to play a crucial 
role in meeting basic needs, while balancing a global carbon budget and the changing consumption patterns of 
a growing global middle class. Designing and implementing energy efficiency strategies necessitates high-
resolution data at multiple levels, but local stakeholders often lack the resources to build high-quality data 
infrastructure. We propose a mixed-methods approach combining machine learning for predicting appliance 
ownership, appliance-level trace data, results from field-level pilot projects, and combining disparate data 
sources (e.g., census, surveys and distributed sensor data) through Bayesian updating to characterize the 
magnitude and uncertainty of appliance characteristics. We implement our approach with data from Nicaragua, 
and demonstrate high-accuracy (3% error) at predicting appliance ownership through a decision tree 
framework, and provide posterior distributions for some of most energy consuming appliances in households 
and small-businesses. Our methodology allows us to construct a marginal cost of saved energy curve (MCSE), 
characterizing both the magnitude and uncertainty of a variety of energy efficiency strategies. Applying machine 
learning and Bayesian inference techniques to combinations of seemingly disparate data streams provides a 
cost-effective approach to better understand the energy efficiency gap, and better determine the feasibility and 
uncertainty of different implementation strategies. 

 
  



1. Introduction  
 

Elucidating demand is a crucial element for designing and implementing short- and long-term energy efficiency 

strategies. Developing estimates on what energy efficiency goals should be and what the ‘energy efficiency gap’ 

is (1), however, remains a contested topic in the literature. Some estimates suggest that nearly two-thirds of the 

economic potential of energy efficiency remains unfulfilled, that 70% of global energy use exists outside of 

existing efficiency performance requirements, and that the untapped efficiency resource represents 

approximately 40% of the green house abatement potential that can be realized below a cost of $US 80 per 

metric ton of tCO2e (2–4). Other analysis suggests that these estimates are overstated by traditional analysis 

(e.g., engineering estimates and empirical estimates of returns observed to investments) that fail to incorporate 

physical, risk and opportunity costs, costs to project participants, and other unobserved factors that can reduce 

the effectiveness of energy efficiency interventions (e.g., behavioral aspects) (5). Thus, the literature arguing 

whether or not there is an energy efficiency gap, and how large it is, falls into three broad categories including 

market failures, behavioral explanations, and modeling flaws (6).  

 The energy efficiency gap is broadly defined as the perceived slow rate of diffusion and adoption of 

energy efficient products and practices (7). Some studies view market failures (e.g., energy pricing, 

uninternalized externalities, information asymmetries) as a central element explaining the slow diffusion and 

adoption of energy efficient solutions (5–7). Others, view systematic behavioral biases as the central element 

affecting user economic decision making, hindering the realization of technical potential estimates calculated 

through engineering estimates (7–9). When estimating the efficiency gap, there are a set of competing and 

complementary methods. Engineering estimates arrive at the technical potential, but usually overstate net 

benefits if they do not account for hidden user costs (e.g., time investments, sunk costs, risk and uncertainty), 

heterogeneity of preferences and users, and long-term reductions in quality of service, among others (7). 

Similarly, if engineering estimates do not incorporate behavioral aspects, diffusion strategies might lead to 

unintended consequences, such as the rebound effect (7, 10). Acknowledgement of modeling and measurement 

flaws has been one of the most recent additions in attempting to explain the energy efficiency gap (6). These 

flaws include the lack of context with regards to appliance and product characteristics and attributes, and with 

regards to modeling it includes a failure to incorporate heterogeneity in costs and benefits across users, use of 

inappropriate discount rates, uncertainty, irreversibility and option value (6). Behavioral characteristics that 

explain the existence of a gap, and describe why it may be difficult to reduce it, include theories on non-standard 

preferences (11), loss aversion (12–14), non-standard beliefs (15), bounded rationality, and non-standard 

decision making (6, 7, 9, 16). Because there is a wide range of methodologies through which many of these 

hypotheses are tested, the literature has yet to arrive at a consensus regarding the existence and size of the 

efficiency gap.  

 Strategies to reduce the efficiency gap as it relates to practices and products, include user information 



feedback mechanisms and energy efficiency standards. Examples of user information mechanisms include 

energy audits, improved appliance product labeling (e.g., Energy Star), displaying lifetime energy costs, cueing 

social norms, gamifying, and a suite of energy information products (e.g., energy monitors, apps, SMS) to engage 

users in actions that can help them achieve reductions in energy consumption (7, 17–22). Energy efficiency 

standards are generally implemented as policies requiring new appliances to meet certain requirements and 

energy efficiency levels before they can be offered to users (7). While using standards as the sole mechanism 

for advancing energy efficiency has been often criticized in the literature (e.g., technical potential over-estimates, 

neglect of welfare effects and heterogeneity of preferences and users), they are often favored as policy 

instruments as they appear to be relatively straightforward to implement and enforce (7). As the example of 

LEDs and other efficient lighting in the U.S. may suggest, efficiency standards have a large role to play in 

achieving energy efficiency goals (23).  

 Key to designing, planning and implementing these strategies is data. However, in many contexts, and 

especially in resource constrained environments, data is scarce. Detailed appliance ownership surveys are 

performed decades apart, no surveys on user perceptions related to energy consumption and energy efficiency 

strategies are performed, there are no regularly updated market analyses of the appliances available for purchase 

(in stores as well as second-hand markets), and no baseline estimates of household and small business 

characteristics that affect energy consumption (e.g., building envelope, temperature, household size). While the 

previous descriptions only provide static snapshots of the state of an appliance or energy consumption 

marketplace, time series data that can depict usage patterns, behavior, and the efficiency of appliances is 

practically non-existent. Most low, low-middle income countries do not have smart meters, or provide access 

to 15-minute interval data to study consumption. This lack of data obfuscates the process through which 

planning for which cities and countries can achieve their energy efficiency goals. For example, is the efficiency 

gap in a country due to a lack of appliance standards, or due to lack of financing to enable ownership of efficient 

appliances? Do users buy appliances from stores or second-hand markets? What is the energy consumption 

profile of appliances in the field, and which appliances consume the bulk of total energy? What strategies are 

users already implementing to save energy, and how can they be fostered? How can product design adapt to 

existing local energy saving customs and practices? 

Here, we argue that sampling data from different sources (e.g., census, health and social demographic, 

surveys and sensor data) is a critical component for evaluating the energy efficiency gap - informing energy 

efficiency policy, designing effective standards, and discovering opportunities for behavioral and technical 

energy efficiency interventions. We focus our case study in Managua, Nicaragua, as it exemplifies many resource 

constrained environments (e.g., communities that might exist in relative income, infrastructural, or institutional 

scarcity) in the global south, where most of the growth in electricity demand is expected to occur (24). Similarly, 

the approach we take here can be used to understand the efficiency gap in low, low-middle income 

neighborhoods of relatively richer countries. Continuously collecting data, we argue, is central to understanding 



the market failures, behavioral characteristics, and modeling flaws that fail to capture and help in the diffusion 

of energy efficient products and technologies. Because the data that is collected for any technical analysis (e.g., 

engineering or user-focused modeling) will be an important driver of results (and informing policy), these data 

(and results) must also characterize their inherent uncertainty or sampling bias (if any). Countries like Nicaragua 

have little data on existing and future appliance stocks, and thus, reliable estimates must be developed 

combining Census and household level surveys. Second hand market analysis to understand the state and 

penetration of efficient appliances should also supplement available web data with second hand market data to 

avoid sampling bias (large retailers with websites might only cater to the middle, and upper-middle class which 

is relatively small in some countries), should collect field random samples and build data sets with sensor 

networks to understand the current state of appliances, and when possible, capture time series of usage to 

understand behavior. A strong complement to these data would be interviews and surveys related to usage 

practices, and belief systems with regards to energy efficiency.  

We bring together several disparate streams of data to make predictions of appliance ownership 

throughout the country, use web and second-hand market data to perform a market analysis, and use data from 

sensor networks to validate market data and understand usage behavior. We implement machine learning 

algorithms to predict appliance ownership throughout Nicaragua, and Bayesian updating to characterize the 

magnitude and uncertainty of appliance characteristics in Nicaragua. As wealth, appliance efficiency and 

affordability, and social demographics change in time, it is important to recurrently update data streams to 

understand the diffusion, adoption and usage characteristics of energy efficient technology to meet short- and 

long-term demand reduction goals. 

 
 

2. Materials and Methods 
 
We use a mixed-methods approach that combines data and analytical methods at multiple timescales. First, we 

describe the macro-level census data that is used for predicting appliance ownership across the country, as well 

as the web- and market-level data that is collected to create the prior-distributions for Bayesian inference. 

Afterwards, we explain how these data is used with appliance-level trace data to create posterior distributions 

of energy consumption of different appliances throughout the country. Our methods include the use of 

Random Forests to predict appliance ownership, and Bayesian Inference to create posterior distributions of 

energy consumption by appliance. The sections below explain our approach in detail. 

 
2.1 Data Sources 

 
We use three principal sources of socioeconomic data for this analysis: official macro-level data streams, web 

crawlers and ground-level market analysis, and sensor data. At the macro-level (country-level), the first, is a 

combination of Nicaragua’s 2011 Demographic Household Survey (DHS) and the Nicaraguan 2005 Census. 



DHS data includes a statistically representative sample of 19,918 unique households, and 135 towns. DHS data 

collects detailed household characteristics including wall, floor, and roof type, sanitation characteristics, access 

to basic services (water, sanitation, and modern energy services), and education levels, among many other 

things. In addition, DHS also includes information regarding the ownership of electrical appliances including 

radios, televisions, cell phones, and refrigerators among others. The 2005 Nicaraguan census is a higher-spatial 

resolution data set, as it includes over 1 million households throughout the country (1,116,540), but collects 

less details about each individual household. The data includes household level characteristics albeit at a lower 

resolution than the DHS. For example, the census includes data regarding the quality (a binary variable) of access 

to basic services such as water, sanitation, and the quality of living conditions (e.g., walls, roof, and floor types), 

but doesn’t include the service access types (for example, local vs. community water wells, or, electrification via 

PV systems vs. grid extension). Because neither the DHS nor the Nicaragua Census data contain geospatial 

data, a Python script written using a Google API was used to obtain town coordinates (lat-long). Only two 

thirds of the census data were able to be geo-spatially located, because the town names couldn’t be found via 

the API. 

To aggregate the DHS and Nicaraguan census data, socio-demographic data from each DHS 

household was transformed into a format equivalent to that of the Census. For example, if ‘water access’ was 

specified in DHS as coming from a river or stream, lake or lagoon, or a water hole, it would be considered of 

poor quality (binary value: 1). Next, the households DHS ‘weights’ were used to expand the size of the data set 

within its sampling area (a house’s weight suggests the number of similar households that are likely to be found 

within a sampling area). Because DHS is household-level data and the Census is town-level data, the latter was 

disaggregated into households. For each region (state) within the DHS all possible household socio- 

demographic characteristic combinations were identified and associated with a probability. Then, by using town 

socio-demographic characteristics totals, and the associated probabilities of all unique combinations, each town 

was disaggregated into distinct households. Figure X and X depicts some elements of these dat 
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Figure 1. DHS and Census Town Locations [1.A] and [1.B] Features evaluated from each data set in our 
analysis.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Spatial diversity of appliance ownership [2.a and 2.b] and lack of electricity access [2.b number of 
people, 2.c percent of people in town]. Note: 2.a and 2.b represent the representative number of households to 
own a particular appliance within a certain sampling region. 
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Figure 1. DHS and Census town locations [X.A] and [X.B] features used in this analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Spatial diversity of appliance ownership [2.a and 2.b] and lack of electricity access [2.b 

number of people, 2.c percent of people in town]. Note: 2.a and 2.b depict the representative number 
of households that own a particular appliance within a certain sampling region. 

 
Our appliance market analysis was a combination of web-crawlers and ground-level market analysis 

(25). Energy consumptions from these data were merely used to create the prior distributions in our analysis, 

as it would later be updated via the trace level data obtained through sensors in the posterior distribution. We 

collected web and ground-level market data related to brand, dimensions, wattage, and prices for plug loads 

such as televisions, fans, and washing machines. For refrigerators and freezers we collected wattage, volume, 

and labeled expected monthly energy consumption, when applicable. For refrigerators and freezers for which 

there was no wattage data available, we used cubic size, refrigerator or freezer type, and age, in combination 

with the fridge energy calculator available at the Energy Star website to determine approximate monthly energy 

consumption values (26). Because web-crawlers used on stores that are ready-available online can provide a 

skewed distribution geared towards the urban middle- and upper-middle class, we complement these data with 

an on-the-ground market survey. We surveyed two of the most popular second-hand markets in Managua, 
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where it is most common for households to purchase used appliances. In total, we collected market data for 

227 appliances including televisions (35), washing machines (42), refrigerators and freezers (116) and fans (34).  

Sensor data is gathered from two pilot projects in Managua that were evaluating the potential for 

flexible demand and behavioral energy efficiency in households and small businesses throughout the city (27).  

Households and small businesses participating in our pilot projects (105) were randomly selected from a 

random sample of over 700 households and small businesses throughout the city. This random sample was 

created from low, low-middle income neighborhoods of similar social and economic demographics such as 

overcrowding, access to basic services, housing quality, education level, economic dependency and incidence 

of poverty. From the flexible demand project, we use field-data from 30 refrigerators and freezers that was 

collected throughout over a year of baseline and implementation. Data was collected through a FlexBox sensor 

gateway (27) that aggregated disparate data streams including ambient temperature, inside temperature of 

refrigerators and freezers, total household energy consumption, refrigerator-level energy consumption, and 

refrigerator door openings. The high-resolution (minute-level) refrigerator-level energy consumption data 

reflects the variability and impact of seasonal consumption (e.g., summer vs winter) as well as intra-day hourly 

variability, when aggregated. The second and most recent behavioral energy efficiency project provided plug-

load level data for refrigerators and freezers, fans, televisions, washing machines, and cellphones for 75 

households and small businesses. For these data, we recorded the labeled wattage, dimensions (e.g., screen size 

for television, cubic size for refrigerators), approximate age, as well as 30 minutes of energy consumption per 

household or business. When measuring energy consumption at each house we could use from one to five 

ZOOZ Z-wave plug load monitoring devices to measure the contribution of each appliance to the household 

total.  

 

 

 

 

 

 

Table 1. Data: Macro-level aggregates, market analysis, and sensor data. 
 
 

2.2 Analytical Framework 

To predict future ownership of electrical appliances for households currently without them, but with the 

Data Source Units Socio-Demographic Characteristics Appliance Data Resolution

Demographic and Health Survey (DHS) 
2011

19,918 unique 
households, and 135 

towns

wall-type, roof-type, floor-type, household type, primary energy 
source (type), primary electricity source (type), primary energy 
source (type), ownership type, sanitation access (type), state.

radio, sound system, television, refrigerator, 
microwave, iron, fan, AC, sewing machine, DVD, 

washing machine, video gams, cable TV, internet, 
cellphone

Household level variable type (e.g., 
wall-type)

Census 2005 1,116,540 households
Binary variables (1 - adequate, 0 - inadequate): walll quality, roof 

quality, floor quality, household quality, electricity access (1 - access, 
0 - no access), water quality, sanitation quality, household 

- Town level aggregates

Web and on-the-ground appliance market 
survey

227 appliances -

Dimensions (e.g., screen size, volume), wattage, 
monthly energy consumption estimates, price: 

refrigerators/freezers, televisions, fans, washing 
machines, cell phones

Appliance level

Sensor data 105 appliances -

Minute-by-minute power and energy 
consumption: refrigerators/freezers, televisions, 

fans, washing machines, cell phones Appliance level



possibility and conditions to access them in the future, we use socio-demographic similarities and a decision 

tree framework. To build credible distributions of existing appliances in the country, and their energy use, we 

use market analysis, survey and sensor data, combined with Bayesian updating. 

We use the extended (un-weighted) DHS data to train our decision tree. The goal is to create a model 

that accurately predicts ownership of each electrical appliance separately, by using decision rules inferred from 

social-demographic characteristics. A random forest gradient boost algorithm then iterates over all possible 

combinations of social demographic characteristics, and hyperparameters, seeking to identify the optimal 

combination that minimizes the training error for each electrical appliance (radio, sound systems, television, 

refrigerators, microwaves, irons, fans, ACs, sewing machines, DVDs, video game consoles, internet, and 

cellphones). To improve the decision tree algorithm, we explored the maximum depth hyperparameter of the 

tree. For individual trees, we found that it was best to expand all nodes completely. However, for the ensemble 

methods described below, we found that the maximum depth hyperparameter played an important role in 

minimizing the error of predictions.  In addition to an individual decision tree, we tested boosting ensemble 

methods, including Gradient Boosted Regression Trees (GBRT) and Random Forests. In contrast to averaged 

ensemble methods, boosting methods build base estimators sequentially with the goal of minimizing the bias 

of the combined estimator. The GBRT, for example, is an additive model of the form:  

 

𝐹 𝑥 = 	 𝛾&𝑓& 𝑥 + 	𝛾)𝑓) 𝑥 + 	𝛾*𝑓* 𝑥 = 	 𝛾+𝑓+ 𝑥
,

+-)
	 

Here the final GBRT classifier (F) is the sum of several decision tree classifiers (fi). The model is 

additive at each sequential boosting stage, such that:  

 

𝐹+ 𝑥 = 	𝐹+-) 𝑥 + 	𝛾+𝑓+ 𝑥  

 

where fi (x) is chosen to minimize the loss function. For the GBRT algorithm, we optimized three 

hyperparameters, namely the number of boosting stages to perform, the learning rate that sets the contribution 

of each tree, and the maximum depth of individual estimators that limits the nodes in each individual decision 

tree. The hyperparameters were optimized by training with the full DHS dataset for each of the predicted 

output variables. For most of these variables, the optimal depth, which depends on the interaction of input 

variables, was equal to 6 nodes. There was a trade-off between the number of boosting stages and contribution 

of each tree, with an optimal of 100 and 1 for boosting states to perform and learning rate, respectively.  

To build reliable distributions from disparate appliance level data streams we perform summary 



descriptive statistics, and use Bayesian updating to construct posterior distributions for each appliance 

characterizing their magnitude and uncertainty. We use Bayesian updating as an example of a methodology that 

can be used to improve (or update) prior knowledge to produce posterior probability estimates. We use web-

market data as our prior (a log-normal distribution), and build the posterior probability estimates using data 

from second-hand markets and sensors. R functions including JAGS and CODA are used to construct the 

posterior distribution for each appliance’s characteristics (28, 29). Because our data is well described by log-

normal distributions we implement Markov Chain Monte Carlo chains on log-normal data, and then transform 

the estimated parameters to obtain mean and uncertainty estimates for y as opposed to log(y) (y being appliance 

characteristics)(30). We perform a posterior predictive check on our data, and obtain distributions for the mode, 

mean and standard deviation of both y and log(y). We argue that using Bayes is appropriate to arrive at a better 

understanding of our baseline appliance characteristics, as using static data is not sufficient to understand the 

true distribution (and parameters) of that data. Bayes, in this case, allows us to arrive at parameter estimates and 

characterizations of uncertainty that are crucial for determining energy efficiency strategies.  

 
 
3. Results and Discussion 
 
3.1 Appliance Ownership Prediction 
 

The variables (electrical appliances) where ownership could be predicted with the smallest error in the training 

set were AC systems (1.6%), video game consoles (5.5%), internet access (5.9%), and television sets (10.3%). 

Table 2 provides a summary of results and the optimal predictors for each electrical appliance in the training 

set. AC, video games, and internet access are likely to be the appliances with the most accurate predictions 

because they are only owned by a small and very particular niche of social-demographics relevant to middle-

high, and high-income households in Nicaragua (their characteristics are very specific and easy to predict). The 

rest of the appliances ranging from televisions to radios have a high likelihood of being owned across a spectrum 

of social-demographics, and thus, the prediction error is higher in the training set. Radios, for example, are very 

likely to be found in every household (80%) and thus have a much higher prediction error (31). The ownership 

of radios ranges from the highest to the lowest income bracket, and across all combinations of social 

demographics. Because our macro-level data aggregates are from 2005 (Census) and 2011 (DHS), they don’t 

fully capture the rapid and evolving dynamics that have come to play with regards to appliance ownership. For 

example, in 2011, cellphone ownership in Nicaragua had only reached 70% of the population, but by 2014 

there were already 1.5 cellphones per person (more cellphones than people in the country)(32, 33). Although 

this doesn’t suggest that cellphones are equally distributed across social demographics, it does suggest that in 

recent years there are some important technology evolution dynamics that are not captured by historical data – 

and thus, our analysis. If there were more recent data available, we would expect the training error to be equally 



low (or lower) for cellphones as it is for radios. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Accuracy of Predicting Different Appliances in the Training Set 
 

 

After training our decision tree classifier on each appliance using the full DHS extended data set, we 

predict appliance ownership based on social demographic similarity. We use each individually trained appliance 

model to predict appliance ownership for all towns (and households) in the country for which we have data.  

Our prediction results make intuitive sense. Cellphones, televisions, and irons are predicted to be the appliances 

with the greatest diffusion based on social-demographic similarity. In the literature, cellphones and televisions, 

and other affordable connectivity related appliances, have been documented to be the most coveted appliances 

pre- and post-electrification (34–36). Furthermore, the growth of cellphones and televisions has been 

significantly documented in Nicaragua’s media since 2005 and 2011 (when we have the latest available data). In 

the absence of official data, web media from Nicaragua suggests that there are now more cellphones than 

people in the country, and that the growth in the ownership of televisions increases year after year (32, 33, 37, 

38).   
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of individual estimators (max_depth) that limits the nodes in each individual decision tree. 
The hyperparameters were optimized by training with the full DHS dataset for each of the 
predicted output variables. For most of these variables, the optimal max_depth, which 
depends on the interaction of input variables, was equal to 6 nodes. There was a trade-off 
between the number of boosting stages and contribution of each tree, with an optimal of 
100 and 1 for n_estimators and learning_rate, respectively. 
 

5. Results :   
 
The variables (electrical appliances) where ownership can be predicted with the smallest 
error are AC systems (1.6%), video game consoles (5.5%), internet access (5.9%), and 
television sets (10.3%). Table 1 provides a summary of results and the optimal predicting 
variables for each electrical appliance.  

 
After training our decision tree classifier using the 
full DHS extended data set, our model allows us to 
predict what appliance ownership could be based on 
social demographic similarity. We test our model on 
one state in Nicaragua (Boaco) that has yet to be 
fully electrified, despite the fact that it is relatively 
close to the country’s transmission grid. Boaco is 
located in the central part of the country. Results 
suggest that there are only two towns with a high 
penetration of electrical appliances (the two major 
towns in the region).  
 
 

 
If this region were to be electrified, and based on the household’s social-demographic 
characteristics, cellphones and televisions would be the most prevalent loads, followed by 
irons, fans and refrigerators. Because of the nature of the data, and the lack of ‘ground 
truthing’, field surveys, or on-the-ground research we perform no further validation on the 
model. This methodology can be used and expanded to predict appliance ownership for all 
off-grid regions in Nicaragua. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Total number of appliances in one example town, and load diversity. 
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Variable  % Error Predicting Vars
AC 1.6 0, 1, 2, 3, 7, 8, 9, 10, 11

Video games 5.4 0, 1, 2, 3, 7, 8, 9, 10, 11

Internet Access 5.9 0, 1, 2, 3,  7, 8, 9, 10, 11

Television 10.3 0, 1, 2, 3, 7, 8, 9, 10, 11

Sewing Machine 12.5 0, 1, 2, 3, 7, 8, 9, 10, 11

Microwave 15.8 0, 1, 2, 3, 7, 8, 9, 10, 11

Iron 16.6 0, 1, 2, 3,7, 8, 9, 10, 11
Cellphone 18.6 0, 1, 2, 3, 7, 8, 9, 11

Fan 20.0 0, 1, 2, 3, 7, 8, 9, 10, 11
Cable TV 20.3 0, 1, 2, 3, 7, 8, 9, 10, 11

Refrigerator 20.5 0, 1, 2, 4, 7, 8, 9, 10, 11

Sound system 27.2 0, 1, 2, 3, 7, 8, 9, 10, 11
DVD 29.4 0, 1, 2, 3,  8, 9, 10, 11

Radio 31.0 0, 1, 2, 3,  7, 8, 9, 10, 11

Variable Code: [1] 0: Water quality, 1: roof quality, 2: floor quality, 
3: household quality, 7: water access qualit, 8:household 
ownership, 9:sanitation access quality, 9: firewood as primary 
cooking fuel



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Test Set Predictions: Spatial distribution of prediction on sample towns, percentage market 
share by appliance, and percentage population reach. Because neither the DHS nor the Census contain 
geospatial data, a Python script written using a Google API was used to obtain town coordinates (lat-long). 
Only two thirds of the census data were able to be geo-spatially located. 
 

We explore the distribution of predicted appliances in two different ways, one determines the market 



share of each appliance with respect to the total (% market share), and the other determines the distribution of 

appliances with respect to population (% population with ownership of specific appliances). Cellphones, 

televisions and irons capture the largest appliance market shares with 20%, 16% and 15% respectively (over 

51% of the total appliance market), followed by refrigerators, cable TV and sound systems, and radios. Similarly, 

our prediction using social-demographics suggests that if communities without electricity were to be electrified, 

the most ubiquitous loads would be cellphones (97% population reach) and televisions (81%). Following 

relatively behind are fans (46% population reach), refrigerators (43%), DVDs (40%), Cable TV modems (38%), 

sound systems (38%), and radios (20%).  Based on the training data, we should expect to see a much higher 

distribution of radios, but the relatively higher prediction error associated with them produces a relatively lower 

number. Our results make intuitive sense and are aligned with small sample market analysis performed by 

newspapers in Managua, and our own field data.  

To validate our predictions, we compare our estimates to the latest 2016 national survey of households 

in Nicaragua (39). Unfortunately, there are only five coincident appliances available for comparison between 

the 2005 Census, 2011 DHS data, and the 2016 Household level surveys: cellphones, televisions, refrigerators, 

access to Cable TV (antennas and modems), and AC ownership. Our most accurate predictions for total 

appliance ownership are for AC (prediction: 0.5% vs. actual: 1%), cable TV (prediction 38.7% vs. actual: 35.4%), 

and refrigerators (prediction: 43.6% vs. actual: 38.2%), with an average error of 3%.  Cellphones (prediction: 

96.8% vs. actual: 86.5%), and televisions (prediction: 81.1%vs. actual: 68.5%), have an average error of 11%.  

Data for computers, internet modems, plasma TV, and washing machines were not able to be verified either 

because the data was not available in the 2005 Census and 2011 DHS data, or because the data was not available 

in the 2016 household survey. Although we have a relatively low prediction error of 7%, these comparisons are 

not fully accurate. When performing appliance predictions using social demographics, the underlying 

assumption is that the spectrum of social demographics is maintained as households become electrified. Thus, 

we consistently over predict appliance ownership as Nicaragua hasn’t reached full electrification (85%), with 

15% of the population remaining without electricity access. If Nicaragua were to be fully electrified while 

maintaining a similar spectrum of social-demographics we would expect our predictions to be even closer to 

ground-truth. However, in reality, and as electrification, wealth, social-demographics, and the efficiency of 

appliances co-evolve, the affordability and access to appliances significantly changes.  

 

 

 

 



 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4. Ownership of Appliances over Time vs. Prediction Accuracy: Air conditioners, Cable TV 
(antennas and modems), refrigerators, televisions and cellphones. Lines depict actual data, circles depict 
predictions. 
 
 
 
3.2 Appliance and Usage Characteristics 
 
Using web and second-hand market data, data from appliance stickers and labels, and real-time power 

consumption measurements from randomly selected households and businesses (televisions, fans, washing 

machines, refrigerators, and cellphones), we compare wattage and energy consumption distributions for some 

of the most popular and more energy consuming appliances in the country. Data collected from households 

and small businesses regarding fans, televisions, and washing machines suggest that these appliances consume 

less power than the median rated consumption values through our market analysis and survey data. For 

example, on-mode power consumption of fans was 55 Watts, compared to the 61 Watts median value found 

on the appliance labels, and the 64 Watts found through our market research. Televisions consumed an average 

of 62 Watts (on-mode power consumption), compared to the 65 Watts found on the appliance labels, and the 

85 Watts calculated through market research. Washing machines consumed an average of 354 Watts, compared 

to the 510 and 530 Watts found on appliance labels and through market research respectively. The large 

difference in power consumption televisions values between our field-data and the market suggests that there 

0.5%

38.7%

43.6%

81.1%

96.8%



is more availability of larger screens, and relatively inefficient television models in markets than what the 

households and small businesses in our sample currently have. For washing machines, the difference in values 

is likely due to measurement, as our data collection snap shot was likely taken at a washing-cycle of relatively 

low power consumption.  

The comparison with the greatest difference was from refrigerator energy consumption values. For 

this comparison, we used energy consumption values (kWh/month) from market research and refrigerator 

labels when available, or used cubic size, refrigerator type and age, and the Energy Star website to calculate 

monthly energy consumption (26). For real-time measurements of monthly energy consumption we used data 

from the implementation of a FlexBox, which monitored real time parameters in Nicaragua (27). The results 

suggest that the appliances surveyed in the field (dimensions) consumed 40% more energy than the appliances 

available in the market (43.2 kWh/month vs 31.6 kWh/month respectively). However, when using actual usage 

data as a comparison, we found that field refrigerators consumed 70% more energy than what is currently 

available in the Nicaraguan market (70 kwh/month).  

The power and energy consumption values collected through measurement, and gathered from web 

and field market research suggest the existence of an appliance-level efficiency gap. For example, 15-24 inch 

efficient televisions range in consumption from to 14 to 63 Watts (0.06-0.11 W/in2)(40), suggesting that 

televisions in our sample are at the upper end of the spectrum. There exist even more energy efficient televisions 

that are twice the size (50 inches, 35 Watts, 0.014 W/in2), but are not affordable ($US 900)(41). We did not find 

literature summarizing the most energy efficient floor fans, but web research suggests that some of the most 

efficient fans range from 40 Watts to 60 Watts, suggesting both that fans in our sample were also at the upper 

end of the efficiency spectrum (42, 43). Similarly, when we compare the washing machines encountered in the 

field (on the ground and market research) with Energy Star washing machines, we find that washing machines 

in Nicaragua consume from 40% to 1.08 more per year (using the same set of assumptions for calculating 

annual energy consumption as specified by Energy Star)(44). When comparing refrigerators and freezers to the 

latest and most efficient refrigerators available through Energy Star (CITE), we find that refrigerators in our 

sample consume between 36% and 1.21 more energy per year than the median value available from Energy 

Star (45). 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Distributions of Common Household and Small Business Appliances: Densities of televisions 
and washing machines, and Cellphones [A,C,E],  and histograms of fans (Watts), and monthly energy 
consumption of refrigerators (kWh/month) [B,D]. Distribution depicted depends on data availability and 
quality of visual representation. All comparisons incorporating real-time data use maximum on-mode power 
consumption values, as these values are what is widely used in market analysis and appliance labels. 
 
 
While collecting disparate streams of data may be useful for simple technical comparisons, they provide little 

information about usage. For example, the engineering calculations used to estimate monthly energy 

consumption for refrigerators and freezers provided an underestimate close to 30%. While volume, refrigerator 

type, and age can give an approximation to energy consumption, there are confounding elements that may 



affect the energy consumption of appliances (e.g., usage behavior, appliance physical condition, and efficiency). 

For example, in Nicaragua, 70% of users surveyed in another study suggested that users turn their refrigerator 

or freezer at different times of the day in an attempt to save energy (27), and the physical condition of many of 

these refrigerators and freezers would often be in a poor state. Door gaskets could be completely missing or 

broken, the inside metal or plastic insulation would be missing or corroded, thermostats would be set at their 

highest cooling level, leaky coolants would be present without any previous diagnosis, and in some cases, 

compressors would have been swapped two or three times. Furthermore, best practices on fridge maintenance 

such as wall spacing, cooling of food before storing it, and placing lids on all storage containers were not part 

of local user behavior. Other work in Nicaragua has found the usage efficiency of refrigerators to vary 

significantly throughout the day, leaving them particularly vulnerable to hot weather (27). 

To understand the contribution of all appliances to the household or business level consumption we 

measured power and energy trace of each unit’s major appliances at the same time. At each household or 

business, we collected three hours’ worth of total household and appliance level data. Figure X (below) depicts 

the distribution of each appliance’s contribution to total household- or business-level consumption. On 

average, and during the three-hour interval in which we collected data, refrigerators consumed between 35% 

to 95% of total energy consumption (median: 58%) when all other appliances were turned on, followed by 

washing machines 34%, televisions 14%, fans 12%, and cellphones 1.5% (‘other’ appliances had a median 

energy consumption of 23%). Although these data provide further insight into the actual energy use of these 

appliances, it is still not fully representative of actual usage. A more rigorous approach would be to have a 

week’s worth of fully labeled appliance data in order to capture weekly temporal variability, usage patterns, and 

the contribution of each appliance to the monthly total. While user surveys and appliance labels could be 

complementary used to arrive at these numbers, confounding data issues related to actual behavior and physical 

condition of appliances would create a large difference between engineering estimates and ground-truth. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 6. Contribution of Different Appliances to Total Household and Small Business Energy 
Consumption: Results from 3-hour interval measurements of 75 households and small-businesses in 
Managua, Nicaragua. Refrigerators consume between 35% to 95% of total energy consumption when all 
other appliances were turned on.  

 
 
3.3 Posterior Distributions of Appliance Characteristics 
 
We use Bayesian updating to construct posterior distributions for appliance characteristics (Watts and energy 

consumption, when appropriate) for fans, televisions, washing machines, and refrigerators. Web-market data is 

used as a prior for each appliance and we build posterior probability estimates using data from second-hand 

markets and sensors. MCMC is implemented on log-normal data, and the estimated parameters are transformed 

to obtain mean and uncertainty estimates for y as opposed to log(y) (y being appliance characteristics). For fans, 

the most likely estimate is 59 Watts, 3 Watts lower than what is found through web-market analysis. The 

distribution of the most likely values is narrowed from 56.3 – 71.7 Watts in the prior, to 55.9 – 62.1 Watts in 

the posterior. The most likely Wattage value in the prior (62.9 Watts) does not fall within the 95% high density 

interval (HDI) of the posterior. For televisions, the most likely estimate is 81 Watts, 9 Watts lower than in the 

prior distribution (web-market analysis). Similarly, the distribution of the most likely values is reduced from 

80.3 – 107 watts in the prior, to 74.7 – 89.6 in the posterior, and like the fans, the most likely value in the prior 

(92.2 Watts) does not fall within the most likely values of the posterior. In the posterior distribution, the most 

likely value was 61 Watts lower than in the prior (530 vs. 591 Watts respectively), with a similar distribution 

width of likely values in the prior and posterior distributions. Out of the four appliances, energy consumption 

estimates were the only to have been provided an underestimate by the web-market analysis. In the prior 

distribution, the most likely value of energy consumption was 33.9 kWh/month, with a HDI of 32.5 and 35.4 

kWh/month, and in the posterior distribution the most likely value was 40.7 kWh/month with a distribution 

of likely values ranging from 37.9 to 43.7 kWh/month. The most likely value in the prior distribution, obtained 

through web-market analysis did not fall within the HDI of the posterior distribution. 

 When comparing the parameters and distributions obtained through Bayesian updating, to some of 



the most energy efficient appliances in the market we find that our estimates are towards the higher end of the 

energy consumption spectrum. Fans and televisions in the Nicaraguan market are at the high-end of energy 

consumption with respect to the most efficient appliances currently available. Similarly, washing machines and 

refrigerators consume between 35% and 110% and 30% and 125% more energy than the most efficient 

appliances available, respectively (26, 41–45).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Appliance Characteristics for Prior Distributions 

Fans 

Televisions 

Washing Machines 

Fridges 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Appliance Characteristics for Posterior Distributions 
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3.4 Roofing Material: Lumens and Temperature in Housing and Small Businesses 
 
 
Throughout our surveys, we also collected brightness data inside the households and small businesses that we 

visited. Low, low-income neighborhoods are the vast majority of population in Managua and their roofs are 

usually made from laminated roof, with some of them having Skylights (mean Lumens: 88, median: 65). The 

median value for roofs with skylights had more visible light (68 Lumens) compared to laminated roofs without 

skylights (62 Lumens). All these values are significantly lower than the potential available light that they could 

receive with alternative and appropriate roofing materials. Despite Nicaragua being a tropical country, with 

significant natural visible light available, the great majority of households and businesses would turn lights on 

in the middle of the day to perform tasks, hold meetings, host family and engage in business practices. On 

average, our surveys suggested that households would turn their lights on for at least 2 hours during times of 

the day with ample available natural light. This is an energy efficiency issue, as it is relatively straightforward 

and affordable to swap laminated sheets for sheets with skylights (or install them from the outset). Furthermore, 

cost-effective innovations such as the solar bottle lamp claim that they can provide the Lumens equivalent of 

a 50 Watt non-LED light bulb (750 Lumens) – significantly more than what households and small businesses 

currently have available (Figure 9) 

 With regards to heat and roofing materials, data from a previous implementation of flexible demand 

and behavioral energy efficiency in Managua found that households and small businesses directly experienced 

ambient temperatures throughout the day (27). Many of them, in fact, experienced 2°C warmer inside 

temperatures than the ambient data collected by an outside weather station during the hottest parts of the day 

(the laminated roof, working as an urban oven) (Figure 9). These warm temperatures not only affect comfort 

and health of households and small businesses, but they also increased the energy consumption of cooling loads 

between 20% and 40% during the warmest times of the day (peak usage and small business sales also occurred 

during the warmest times of the day). Poor roofing materials could present a critical problem for city-wide 

energy efficiency programs, as warm temperatures in households and small businesses could reduce the benefits 

of energy efficient appliance swap programs, increasing the use of electric lights during the day, as well as the 

use of fans and other cooling appliances for comfort.  

 

 

 

 

 

 

 



 

 

 

  

 

 

 

 

 

 

 

 

Figure 9. [A] Room temperature of household and small businesses (red) vs. ambient weather station data 
(blue), and [B] Distribution of Lumens inside households and small businesses with laminated roofs, and 
laminated roofs with skylights in Managua, Nicaragua. 

 
 
3.4 Conclusion: Using Micro-Data for Energy Efficiency Planning 
 
 
Together, these data allows us to build a marginal cost of saved energy curve (MCSE), which can help evaluate 

the magnitude and uncertainty of different energy saving strategies, as well as the energy savings per dollar 

spent pursuing the strategy. On average, pursuing all these strategies could lead to over 1000 kwh saved per 

year (if all actions were implemented), with varying rates of success and uncertainty across households and 

small businesses.  As a baseline, we consider the energy and cost savings from swapping a 40 Watt incandescent 

light bulb for a 10 Watt LED bulb, implemented in three rooms of a household or business (with the lights 

being turned on for an average of five hours a day). Energy efficiency strategy scenarios are then compared 

against the baseline including swapping old for new more energy efficient appliances (televisions, fans, washing 

machines, and refrigerators), installing solar water bottles or large skylights, insulating roof materials and 

behavioral energy efficiency interventions. The results suggest that some of the most cost-effective 

interventions include behavioral energy efficiency and allowing for more indoor light, while behavioral energy 

efficiency, insulating roofs and an efficient refrigerator result in the technical savings. A shortcoming, is that 

our calculations are only engineering estimates, with only the behavioral energy efficiency estimates coming 

from a real-world pilot (24). Ideally MCSE curves should be constructed using real world pilots instead of 

engineering estimates.   

Enabling Micro-level Demand-Side Grid Flexiblity in Resource 
Constrained Environments 
 

IoTDI’17, April 2017, Pittsburgh, Pennsylvania USA 
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pose significant problems not only for household and city-wide 
energy efficiency programs, but could also significantly affect 
city dwellers health [47]. Our data suggests that not only does 
room temperature vary significantly during the day, but also that 
the warm temperature extremes are experienced significantly by 
loads and people in houses and micro-enterprises. 

On average, TCL consumption is greatest during the middle 
day when it is the hottest and when households experience the 
majority of their door openings. Figure 8.a depicts normalized 
data (0-1) for all units to compare energy usage over time 
throughout the study period. Manufacturer information from 
refrigeration units in the field labeled the temperature set points 
of the different freezer and refrigeration units to range between -
20°C and 5°C. Field data suggests, however, that the units usually 
oscillated between -10°C and could reach up to 35°C (Figure 6, 
Table 1). This deviation could be a result of appliance losses, and 
behavioral components which include the opening and closing of 
doors and the temporary unplugging of TCLs most units engage 
in.� 

Furthermore, we find that the duty cycle (the ratio of time it 
takes for a refrigerator to traverse its dead-band in an on state 
vs. total time in compressor on and off states) fluctuates during 
the day. Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage during 
the middle of the day (when it’s hottest and when there is more 
activity) than other parts of the day. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
Figure 6: Internal temperature of household and micro-
enterprise TCLS: The temperature range of households is 
similar (top), while micro-enterprise freezers display a 
wider temperature range, ranging from -10°C to room 
temperature (bottom).  
 

Evidence from these field data diverge from previous TCL 
modeling assumptions that suggest that the duty cycle (and 
energy and power capacities) is fixed throughout the day. We 
also compare the coefficient of performance, which was 
measured in an experimental setting at UC Berkeley, to an 
efficiency performance index, which was calculated from data. 
We find that while the experimental COP ranged between 0.01 
and 0.03 and stayed fairly constant throughout the day (with 
minimal heat or behavioral disturbances), the efficiency of 
performance index (EPI) observed in the field ranged drastically 
between 0.0045 (minimum) and 18 (maximum). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Room temperature of household and micro-
enterprises (red) vs. ambient weather station data (blue): 
Houses and micro-enterprises directly experience the 
ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and 
night, the weather station experiences higher 
temperatures than the households and micro- enterprises. 
 
While it would seem like the EPI index is consistent across field 
units (Fig 8), we find that the performance efficiency of the 
refrigerator (the amount of work required to remove heat from a 
cold reservoir) varies within the day. More active and hotter 
times of the day observe lower EPI values than other days. The 
rated power of these appliances ranged from 0.1 to 2.2 kW 
according to the manufacturer label and size; this would result in 
a mean annual consumption range between 280 and 6000 kWh. 
Our field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings from 
our field data and experiment could be used to better inform the 
modeling of TCLs for ancillary services as theoretical models 
usually assume constant duty cycles, energy and power 
capacities and performance efficiencies.  
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found to be moderate and strong in a few households (2 and 1 
units respectively; p<.001).  

The spread in the strength of correlation between 
ambient room temperature and fridge inside temperature and 
fridge energy consumption suggests that there is a panoply of 
user behaviors that are driving the system (Figure 5). For 
example, some units might unplug their fridge when room 
ambient temperature is very high, whereas others might leave 
their appliance ‘on’, with the fridge using more energy to 
preserve (or reduce its internal temperature) during that time. 
Similarly a strong positive correlation between fridge inside 
temperature and room ambient temperature could suggest that 
users unplug their fridge during the hottest parts of the day, 
and a negative strong correlation could suggest that these are 
the times of the day when users actually ‘plug’ their 
refrigerator (and consequently, the time of the day during 
which the refrigerator uses most of its energy). The correlation 
between total household energy consumption and room 
ambient temperature suggests that while there are a few 
households that increase their consumption at higher 
temperatures, there are also others that modify their behavior 
so as to reduce their consumption (for example, turn several 
freezers and refrigerators off). There are many more insights 
from these data, including the opportunity to target energy 
efficiency thermal insulation for refrigerators in certain units, 
as well as the development of detailed energy reports. 
 

B. TCL Parameter EDA 
There are several key parameters for determining the 

technical resource potential of thermostatically controlled 
loads and for building more accurate control algorithms for 
large-scale TCL aggregations. Room temperature, fridge 
inside temperature (of a room, or inside a refrigerator, for 
example), power consumption, and TCL characteristics 
(resistance, capacitance, and wall thickness, for example) are 
all used for the design of a smart controller. It has also been 
suggested that large-scale TCL aggregations of virtual energy 
storage can be represented through both their energy and 
power capacity [46]. To define the energy capacity (the 
maximum amount of energy that can be stored) and the power 
capacity (the full power range of an analogous storage device) 
several parameters are needed including: h (the amount of 
time it takes a TCL to traverse its deadband in ON mode), 
dead-band width (°C), temperature set points (°C), thermal 
resistance (°C/kWh), thermal capacitance (kWh/°C), 
coefficient of performance (COP), and power consumption 
(kW). While TCL models in the literature allow room 
temperature to vary when modeling air conditioners and heat 
pumps, room temperature remains fixed when modeling 
energy and power capacity in refrigerators. Though these 
dynamics may vary across regions and study sites, a fixed 
room temperature also means that a refrigerator’s duty cycle 
remains constant, and so do the power and energy capacities, 
as well as the mean annual energy consumption [46].  

When comparing room temperature and humidity inside 
households and micro-enterprises against ambient weather 
station data, we found that houses and micro-enterprises 

directly experienced ambient temperatures, and often 
experienced hotter temperatures during the hottest part of the 
days due to the absence of reflective or insulating house 
materials infrastructure.   During the early morning (0-6 am) 
all except two houses experience lower temperatures than the 
ambient temperature weather station, but this changes at 6 am 
when approximately half of the households experience higher 
temperatures than the weather station. While room 
temperature allows us to understand intra-hourly and intra day 
temporal variability, and temperature variability is well 
correlated across our weather station and all units, there was a 
wide spread of room temperature across all units (4°C). Poor 
thermal insulation could pose significant problems not only 
for household and city-wide energy efficiency programs, but 
could also significantly affect city dwellers health [47]. Our 
data suggests that not only does room temperature vary 
significantly during the day, but also that the warm 
temperature extremes are experienced significantly by loads 
and people in houses and micro-enterprises. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Internal temperature of household and micro-enterprise TCLS: 
The temperature range of households is similar (top), while micro-enterprise 
freezers display a wider temperature range, ranging from -10°C to room 
temperature (bottom). 
 
On average, TCL consumption is greatest during the middle 
day when it is the hottest and when households experience the 
majority of their door openings. Figure 8.a depicts normalized 
data (0-1) for all units to compare energy usage over time 
throughout the study period.  Manufacturer information from 
refrigeration units in the field labeled the temperature set 
points of the different freezer and refrigeration units to range 
between -20°C and 5°C. Field data suggests, however, that the 
units usually oscillated between -10°C and could reach up to 
35°C (Figure 6, Table 1). This deviation could be a result of 
appliance losses, and behavioral components which include 
the opening and closing of doors and the temporary  
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Figure 7. Room temperature of household and micro-enterprises (red) vs. 
ambient weather station data (blue): Houses and micro-enterprises directly 
experience the ambient weather station temperature on the streets of 
Managua. In the morning, late afternoon, evening and night, the weather 
station experiences higher temperatures than the households and micro-
enterprises.  
 
unplugging of TCLs most units engage in. 

Furthermore, we find that the duty cycle (the ratio of time 
it takes for a refrigerator to traverse its dead-band in an on 
state vs. total time in compressor on and off states) fluctuates 
during the day.  Here, field data suggests that the freezers and 
refrigerators spend more time in the compressor-on stage 
during the middle of the day (when it’s hottest and when there 
is more activity) than other parts of the day. Evidence from 
these field data diverge from previous TCL modeling 
assumptions that suggest that the duty cycle (and energy and 
power capacities) is fixed throughout the day.   

We also compare the coefficient of performance, which 
was measured in an experimental setting at UC Berkeley, to 
an efficiency performance index, which was calculated from 
data. We find that while the experimental COP ranged 
between 0.01 and 0.03 and stayed fairly constant throughout 
the day (with minimal heat or behavioral disturbances), the 
efficiency of performance index (EPI) observed in the field 
ranged drastically between 0.0045 (minimum) and 18 
(maximum). While it would seem like the EPI index is 
consistent across field units (Fig 8), we find that the 
performance efficiency of the refrigerator (the amount of work 
required to remove heat from a cold reservoir) varies within 
the day. More active and hotter times of the day observe lower 
EPI values than other days. The rated power of these 
appliances ranged from 0.1 to 2.2 kW according to the 
manufacturer label and size; this would result in a mean 
annual consumption range between 280 and 6000 kWh. Our 
field data suggests that the actual mean annual energy 
consumption was 1400 kWh for the entire cluster. Findings 
from our field data and experiment could be used to better 
inform the modeling of TCLs for ancillary services as 
theoretical models usually assume constant duty cycles, 
energy and power capacities and performance efficiencies.  

 
 

 
 
 
 
 
 
 
 

 
 

Table 1. Field Data TCL Thermal Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Normalized TCL Energy Consumption by Unit [top] and TCL 
Efficiency Performance Index for all Units [bottom]: [Top] We observe 
TCL energy consumption to be, on average, higher in the middle of the day 
than other parts of the day, and [Bottom] we find the efficiency performance 
index (the ratio between the work that is required to remove heat from a 
reservoir and the heat removed from a reservoir) also varies during the day, 
and is worst in the middle of the day when it is hottest and when the TCL 
experiences most activity.  
 

C. Communications Network EDA 
As part of a test for the reliability and capacity of the 
communications network, we installed five 3G Huawei E3531 

Parameter Symbol  
(Units)

  Mean (SD: Min -- Max)

Ambient temperature θa (°C) 30 (3: 10 -- 41)
Dead-band width δ (°C) 9 (4: -10 -- 35)
Temperature set point1 θset (°C) -20 -- 5
Duty cycle D (-) 0.52 (0.31: 0.1 -- 0.9)
Coefficient of performance2 η (-) 0.01 - 0.03
Efficiency performance index η.e (-) 1.8 (2.4: .0045 - 18)
Power consumption1 P (kW) 0.1 -- 2.2
Mean Annual Energy Consumption per TCL1 MAEC (kWh) 280 -- 6000 
Actual Mean Annual Energy Consumption per TCL AMAEC (kWh) 1400

[1] From product details found in the field and from local refrigerator and freezer providers.

[3] The rest of the data was obtained from the field.

[2] From controlled laboratory experiments.The literature suggests that the COP ranges between 
1.5 and 2.5, we did not observe this in our controlled experiment. COP is a ratio of Qc (heat 
removed from a cold reservoir) over Wref  (the work input required to remove heat from the cold 
reseroir). Experimentally, we calculated the COP for a freezer and refrigerator that were empty, but 
on the field we assumed freezers and refrigerators to be 3/4 full. That is, we used the heat capacity 
of air and water to calculate the efficiency performance index for our field data.



The uncertainty estimates for appliances come from posterior distributions, for roof materials they come from 

the estimated induced energy reduction that cool ambient temperature would have on the energy consumption 

of appliances and comfort (e.g., use of fans), and on the baseline assumptions of current energy consumption 

and efficiency strategies.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Marginal Cost of Saved Energy Curve for Households and Small-Businesses. Baseline 
assumptions include watching television three hours a day (every day of the year), using a fan ten hours a day 
for half of the year, using an efficient washing machine two hours a week (every week of the year), lights 
being turned on for two hours a day during time with plenty of available daylight. 
 
 

An element that is missing from this analysis is the complexity and affordability of each of these 

interventions. While the marginal cost of saved energy provides some information about the cost-effectiveness 

of an intervention, there are several hidden costs that are no included in this analysis. For example, in Nicaragua, 

there are several barriers that would need to be removed for users to have access to new appliances including 

bank accounts and credit history, letters of recommendation from three colleagues or peers, 5-8% interest on 

two-year financing, and no help in removing old appliances from a household or small business. From surveys 

and field pilots of behavioral energy efficiency, all these barriers prevent many households and business to 

acquire new appliances although they would be willing to invest in long term efficiency strategies. There are no 

mechanisms from the government or entrepreneurs to remove these barriers. 

We argue that a reason why it is hard to establish the existence and the size of an efficiency gap in 

resource constrained environments is because there is little bottom-up data collected that can help elucidate 

Behavioral energy efficiency: 
540 kWh/year 

Solar water bottle: 
88 kWh/year 

Large skylight: 
88 kWh/year 

Insulated roof: 
107 kWh/year 

Efficient fan: 
71 kWh/year 

Efficient television: 
58 kWh/year 

Efficient refrigerator: 
108 kWh/year 

Efficient washing machine: 
50 kWh/year 



bottle necks for the implementation of successful strategies. Table 3 depicts some of the data that could be 

useful for the implementation and success of long term strategies. Each of these data complement each other, 

and it would be hard for them to reach full technical potential without knowledge of different components in 

the table below. For example, a market survey of appliances in country can tell you the availability of energy 

efficient appliances but doesn’t tell you whether or not they are actually in people’s houses and how they are 

used. Complementing market data with appliance ownership, as it is done here, provides more reliable data on 

the penetration of energy efficient appliances. Furthermore, even if analysts or planners had market data, 

appliance ownership and actual metered energy consumption data, little would be known about the efficiency 

of these appliances without sensor data (e.g., cooling loads), or any existing user behavioral energy saving 

practices. Behavioral energy efficiency, and hidden opportunities such as cool roofs and skylights are not 

obvious strategies but can have significant benefits in populations that are eager to pursue savings, and where 

retrofits could be cost-effective. 

Without these data, we argue that it will be difficult to design and implement energy efficiency strategies 

that could lead to the necessary reductions in electricity demand for the decarbonization of the electricity sector. 

Because countries and cities with resource constrained environments have a multitude of pressing issues that 

need to be addressed, developing context-specific energy efficiency strategies is crucial to their long-term 

success. Collecting ubiquitous bottom-up data, and using appropriate analytical tools to determine the size and 

uncertainty of different implementation strategies is crucial for cost-effective investments and context-relevant 

interventions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Useful Data in Determining the Existence, Magnitude and Strategies to Address the 
Efficiency Gap in Resource Constrained Environments 

 
 
 
 
 

  

Data Ideal Data Collection Mechanism Methodology if Data not Available Analysis/Insights

Appliance ownership by socio-
economic status, race, religion and 

other relevant demographics

Updated national household and small business survey 
on appliance ownership and social demographics

1) Census, 2) Demographic and Health Care Surveys, 
3) Critical Random Sampling (appliance and social 
demographic surveys). Machine learning to predict 

appliance ownership.

Penetration of efficient appliances, efficiency 
gap

Market survey of appliances in-
country 

National inventory of appliances available for sale 
(disaggregated by retailer types, second-hand 

markets)

Web-crawlers and 2nd hand market analysis from 
representative retailers and markets throughout the 

country

Availability of efficient appliances, efficiency 
gap

Actual in-field energy use of appliances
Utility provided 'data snapshots' of smart meter data 
and appliance-level energy consumption profiles by 

region and social demographics 

Random sample of household and appliance-level 
energy consumption profiles by region and social 
demographics  (off-the-shelf sensors and metering 

devices)

Actual energy consumption profiles, actual 
min, mean, and max power consumption 

values

Efficiency of cooling loads
Utility provided appliance-level parameters for 

calculating energy efficiency.

Random sample of appliances with distributed 
ambient and temperature sensors, and energy 

consumption.

Example: Internal and ambiente 
temperatures can be used inside a 
refrigerator to calculate the amount of energy 
that is required at different times of the day. 
Sensors and infrared imagery also provide 
information of gaps in insulation inside 
refrigerators, and rooms for air conditioners.

User behavior

Utility or government provided (1) surveys on the 
perception and adoption of energy efficiency 

strategies (e.g., disposable income, affordability of 
appliances), (2) time-series smart-meter and appliance 
level data for a representative population to elucidate 

consumption behaviors

Random sample of (1) surveys on the perception and 
adoption of energy efficiency strategies, (2) time-
series smart-meter and appliance level data for a 

representative population to elucidate consumption 
behaviors

(1) Insights into existing user practices (e.g., 
unplugging refrigerator to save energy), (2) 

relative usage of different appliances 
('priority' appliances),

User budget management

Household and/or small-business budgement 
management (e.g., income, costs, disposable income) 

by socio-economic status, race, religion and other 
relevant demographics

Random sample of surveys regarding budgement 
management (e.g., income, costs, disposable 

income) and affordability of accessing new 
appliances, financial barriers to obtain new 

appliances (incuding transportation)

Efficiency gap as it relates to financing new 
appliances and their affordability

Hidden opportunities

-

Random sample of (1) sensor data collecting room 
ambient temperature, energy consumption, and load 
level data provides hidden insights into the efficiency 

gap, (2) surveys of household characteristics (e.g., 
roof type, wall type, number of windows)

Insights into overlooked energy efficiency 
strategies (e.g., cool roofs, natural light)
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