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H I G H L I G H T S

• First flexible demand and behavioral energy efficiency pilot in Latin America.

• 60 participants from low-middle income neighborhoods of Managua, Nicaragua.

• Wireless sensor networks enabled flexible demand and high-resolution feedback.

• 9% behavioral energy savings and≥ 80% participation in flexible demand events.

• Co-benefits included improved energy literacy and financial management.
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A B S T R A C T

Sensor networks, information and communication technologies, and advances in behavioral science can allow
for the design and implementation of inclusive information and automation systems for ongoing low-carbon
transitions. Here, we present results of the first randomized pilot providing tandem behavioral energy efficiency
and flexible demand services through the use of distributed sensor networks in Latin America (Managua,
Nicaragua). We show that the houses and micro-enterprises randomly assigned to the intervention reduced their
energy consumption by nine percent relative to the control group, and participated at length in peak-shaving
flexible demand events (≥80% of events). Identified social co-benefits included increased energy literacy, fi-
nancial management and user empowerment, and find that improved access to energy information was more
important than cash when incentivizing project participation with a high user willingness to pay. Several
challenges may hinder the success of smart systems in resource constrained environments, including temporal
and financial scarcity at the household level, lack of institutional support, and a panoply of top-down misaligned
incentives. We document the multiple barriers to scale flexible demand and energy efficiency strategies, in-
cluding bottom-up (e.g., appliance financing) and top-down (e.g., decoupling) challenges and discuss ways to
overcome them. As more low, low-middle income countries transition away from fossil fuels, the use of sensor
networks and information and communication technologies for building smart and inclusive smart systems will
become increasingly necessary and attractive.

1. Introduction

The ongoing global transition towards renewable energy is now
occurring across all regions, incomes and levels of human development
– with most new renewable energy capacity being installed in low, low-
middle, and middle-income countries [1]. At the same time, access and
ownership of cellphones, smartphones and information and commu-
nication technology (ICTs) has spanned the globe. Currently, there are
more active mobile connections than people in the world (7.8 billion

SIM connections vs. 7.6 billion people), and the number of 3G/4G users
is expected to double by 2020 (2.5 billion users) [2]. The combination
of these two trends presents a unique opportunity to develop and use
low-cost information and communication technologies to address the
inherent challenge in managing increasing penetrations of uncertain
and variable renewable energy, particularly in data-limited contexts
without a smart grid. However, despite the cost reductions in efficient
appliances, renewable energy technologies, and ICTs, there are very
few pilot demonstrations in low, low-middle and middle-income
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economies that harness the synergy of these technologies.
Energy efficiency has a large potential role in reaching global goals

related to energy security [1,2,3], economic efficiency [3,4], local
pollution reduction, and climate abatement [5–7]. However, the size of
the efficiency resource is not well understood. Some estimates suggest
that there is vast economic potential with two-thirds of the resource
remaining unfulfilled [2,5], while other analyses suggest that the re-
source is significantly smaller due to physical constraints, risk and op-
portunity costs, costs to project participants, and unobserved factors
that can reduce the effectiveness of energy efficiency interventions
(e.g., behavioral aspects) [8–10].

There is also widespread interest in using flexible demand as a
means to reduce electricity system operation and infrastructure costs
[9,10]. Within this area, there is a deep literature that provides (i) re-
liability, optimization and engineering analyses of load flexibility
[2,11–20], (ii) evaluations for available sensing, actuation and control
solutions [2,21–24], and (iii) pilots to validate theoretical assumptions,
and understand the physical engineering aspects, and business oppor-
tunities that can inform large-scale deployments [2,21,25–29]. The role
of user behavior and engagement, however, is an often overlooked yet
crucial factor that will critically affect the success of these programs
[30–33]. Behavioral science research has developed a diversity of the-
ories explaining the many reasons why and how energy efficiency
programs succeed and fail [34–36]. Social comparisons and access to
information [34], social cognitive theory and moralized consumer
choice [34,35], the role of autarky and self-determination [37], sus-
tainability leanings [38], political ideology [39], and monetary in-
centives and loss aversion [40], have all been used to explain the me-
chanisms through which individuals (or households) chose to
participate and remain engaged in renewable and energy efficiency
programs [41–43].

Thus far, the majority of research exploring residential and small-
business flexible demand focuses on modeling, as well as regulatory and
technical innovation [42]. There is little work focusing on users’ phy-
sical, temporal, and budget constraints and even less emphasis on un-
derstanding the barriers and drivers that have been uncovered by ad-
vances in behavioral science [30,43–47]. A deeper understanding of
these issues could be leveraged to use flexible demand programs as a
tool for inclusive and social participatory engagement. Motivations for
participating in demand-side management (e.g., monetary, environ-
mental, altruistic, community-oriented) could be as varied as concerns
towards it (e.g., health, privacy, costs) [48], and more research is
needed to develop approaches and technologies that can reach the
greatest number of people. Furthermore, there is very little applied and
interdisciplinary research that informs how to evaluate and narrow the
energy efficiency and smart infrastructure gap in data-limited low-
carbon resource constrained environments. This research is crucial,
however, as most future electricity demand will occur in emerging
economies and the rising south [49–51].

Here, we present what we believe to be the first randomized pilot of
a behavioral energy efficiency and flexible demand intervention in low,
low-middle income neighborhoods in Latin America. Behavioral energy
efficiency is defined as messaging grounded on behavioral science to
produce simple, actionable messages to motivate end-users to save
energy [52]. Flexible demand is defined as the use of communication
and control technology to shift electricity demand across time (e.g.,
seconds, minutes, hours) while delivering end-use services (e.g.,
cooling, heating, electric vehicle charging) [53]. There are several no-
table findings and contributions from our approach. First, we demon-
strate that low-cost wireless sensor networks can be used to achieve
large monetary savings through flexible demand and behavioral energy
efficiency in data-limited resource-constrained environments. We find
that the houses and micro-enterprises (MEs) randomly assigned to our
intervention reduced their energy consumption by nine percent relative
to a control group, and participated at length (> 80%) in peak-shaving
flexible demand events. Second, we use state-of-the-art analysis to

characterize both the parameters and uncertainty of our estimates
through Bayesian Inference and Markov Chain Montecarlo (MCMC), a
novel approach that could significantly benefit many pilot projects with
small sample sizes across the world. Third, our pilot uncovered many
co-benefits to smart grid interventions that had previously not been
identified or discussed at large in the literature, including improve-
ments in energy literacy, knowledge creation, household and small-
business management, small business and women empowerment, as
well as reducing perceived stress of energy expenditures. Finally, our
pilot implementation suggested that under some circumstances,
monetary incentives are not the preferred or the most successful
method of encouraging end-user project participation – even in re-
source constrained environments. When given the option to choose a
reward for program participation of either detailed energy information
or direct cash payments, most participants chose information over cash,
consistent with literature that suggests that non-monetary rewards can
be equally or more effective than financial incentives at motivating
behavioral change. We discuss all these themes at length throughout
the paper.

2. Materials and methods

2.1. Study design and recruitment

Nicaragua has one of the highest penetrations of non-large hydro-
power renewable energy among countries in the Western Hemisphere
(∼%60) [54]. While it has significantly improved access to basic ser-
vices and quality of life after decades of civil unrest, Nicaragua still has
relatively high electricity prices and relatively low scores on ease of
doing business and infrastructural quality [54–56]. In January 2015,
we implemented a baseline survey (N=435) to collect household and
small-business characteristics (e.g., age, education level, gender, and
appliance ownership) on neighborhoods of similar social demographics
(overcrowding, access to basic services, housing quality, education
level, economic dependency and poverty), performed a basic needs
assessment, and gained insight on local perspectives of climate change,
energy costs and grid adequacy, the perceived usefulness of energy
information, and a variety of local energy management perspectives.
Our surveys and interviews included 216 households and 219 micro-
enterprises (e.g., butcheries, chicken shops, corner stores).

The pilot’s baseline survey elucidated many themes that allowed us
to design adequate project invitation mechanisms, and later, effective
information technology systems to retain our project participants.
Energy, food, and access to basic services were the top three self-per-
ceived present concerns in our sample (23%, 20%, and 12% of the
sample ranking an issue as a top concern, respectively) with most
members finding it very-hard (18% of sample) or hard (43% of sample)
to pay their monthly electricity bill. The combination of relatively high
electricity prices (0.21$/kWh) and low incomes created a constant
source of stress in the sampled neighborhoods, with 60% of the sample
checking their energy meter on a daily basis and keeping an energy
calendar, or simply taking “energy notes” (energy meters are sometimes
located outside houses, and other times located with other energy
meters on a street corner) in an attempt to control their energy con-
sumption. Furthermore, 72% of the surveyed households and micro-
enterprises unplugged their refrigerator once a day, or at different times
of the day in an attempt to reduce their energy consumption. Many of
the households and MEs perform this practice on a daily basis while
explicitly acknowledging that they don’t know if their strategies are
being successful. An additional incentive for a careful energy manage-
ment approach by our project participants is that a monthly con-
sumption below 150 kWh leads, on average, to a 60% reduction in the
unit cost of energy $US/month (cost of energy for 150 kWh/month vs.
300 kWh/month). Many of our participants were actively engaged in
attempts to save energy to receive a subsidized cost per unit of elec-
tricity, albeit many of them doing so unsuccessfully.
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Three key survey results motivated a behavioral energy efficiency
and demand side flexibility intervention: (i) 70% of users were already
shifting and reducing their demand on a voluntary basis without any
price or grid incentives (unplugging refrigerators in an attempt to save
energy), (ii) users had a widespread positive perception of service re-
liability despite experiencing frequent outages (e.g., once a week), and
(iii) users experienced relatively higher energy costs that in the United
States (0.21 US$/kWh). In addition, users expressed a personal goal of
lowering their monthly energy consumption in order to receive a sub-
sidized unit cost (monthly consumption below 150kWh is 60% less
expensive than consumption above that threshold), they perceived to
spend 1.5 times more on electricity that they actually did ($US/month),
and they underestimated their actual energy consumption (kWh/
month) by approximately 20% (Fig. 1).

We randomly selected sixty households and micro-enterprises from
the baseline sample to be part of the study (30 treatment and 30 con-
trol), and recruited them into the study with an entry to win a raffle for

a new refrigerator or freezer (or the equivalent in cash) at the end of the
study. All participants agreed to share their historical energy con-
sumption profiles ($US and kWh) for up to a year and participated in a
baseline, midline and endline survey. We also invited half of the par-
ticipating micro-enterprises and half of households to join a treatment
group in exchange for high-resolution energy information, real time
energy alerts, and a flexible demand payment of 175 Cordobas (∼$6
per month, treatment details below). The control group received
nothing. At baseline, treatment and control groups were balanced with
respect to education, number of appliances, energy consumption and
expenditures, and perceived vs. actual energy expenditures ($US/
month) and consumption (kWh/month). Extended details on the survey
used, sampling methodology and complete survey results including
perspectives on climate change, the usefulness of information, and the
accuracy of perceived vs. actual energy costs are available in the SI. All
the randomly selected participants in both the treatment and control
group consented to participate in the project as approved by University
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Fig. 1. Distribution of [A] Monthly Energy Costs ($US), [B] Monthly Consumption (kWh), [C] Perceived vs. Actual Monthly Costs ($US), and [D] perceived vs actual
consumption (kWh) for Households and Micro-Enterprises. [A] and [B] depict histograms of the distribution of monthly energy expenditures ($US) and monthly
energy consumption (kWh) for households (red) and micro-enterprises (blue). Both distributions depict micro-enterprises spending more and consuming more energy
than households. Micro enterprises consume 145 kWh ($US 31) more per month than households. Figures [C] and [D] depict users perceived monthly electricity costs
($US) and consumption (kWh) against their actual consumption (from their paper energy bills). Users perceive that they spend one and half more times on electricity
than they actually do, and underestimate the energy they consume (kWh) by 20%. The blue line depicts the data trend line, and the blackline represents the equality
line or a 1:1 relationship. Data below the equality line suggests that users overestimate their costs ($US/month), and data above the equality line suggests that users
underestimate their consumption (kWh/month). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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of California Berkeley’s Institutional Review Board and Committee for
the Protection of Human Subjects (CPHS Protocol Number 2014-12-
6955). Table 1 and Fig. 1 summarize several elements from the pilot’s
baseline survey, with more in depth details being presented below and
in the Supplemental Information.

2.2. Intervention

The intervention, consisted of a sensor gateway configured to collect
consumption and temperature data and to interrupt power to connected
refrigerators (also called a Flexbox) [2], monthly reports with high-
resolution energy information, real time energy alerts (warning users
when they approached their monthly energy consumption goals), and a
demand flexibility program that curtailed appliances using the Flexbox
according to user-defined schedules and during daily peak grid pricing
events (Fig. 2). In exchange for participation, the treatment group re-
ceived co-designed and user-tailored energy information and real time
alerts, as well as a $US 6 flexible demand monthly payment. Each
FlexBox contained a switch to interrupt power to connected appliances
and sensors measuring fridge or freezer internal temperature, room
temperature and humidity, fridge door activity and fridge energy and
power consumption. We monitored household and business power
consumption at the electric service panel and used a GSM modem for
data transmission and switch actuation. See de Leon Barido et al. [2] for
further sensor network and Flexbox details.

The intervention had three features: Monthly reports, real time
energy alerts and a demand flexibility program that included a US$6/
month payment. Monthly reports were co-designed with participants

and provided (i) Nicaragua’s monthly electricity generation by re-
source, (ii) the user’s current and historical monthly values for: average
hourly consumption (total and fridge only), weekly consumption (total
and fridge only), and monthly total consumption and (iii) relationships
between: ambient temperature and consumption (household and
fridge), fridge door openings and fridge consumption, and fridge in-
ternal temperature and consumption. For monthly real-time energy
alerts, users set a consumption goal for the upcoming month and texted
it to our cloud server, which then sent SMS energy alerts to the user as
various energy consumption thresholds were crossed (e.g., “Careful!
You have reached 90% of your monthly energy budget!”). Demand
flexibility could be programmed by users (e.g. off in specified hours of
the day) and by our servers on days with high forecasted wholesale
electricity prices. Users were notified of flexible demand events lasting
from one to three hours one day in advance and were able to opt out
any time before (by sending a text message), or during a flexible de-
mand event by switching outlets on a power strip provided by the
project.

The FlexBox allowed us to continuously collect key parameters for
monitoring energy consumption and the state of participants’ thermo-
statically controlled loads (TCLs), fridges and refrigerators [2]. For
example, the sensor network presented evidence to suggest that the
temperature inside households and micro-enterprises was higher than
outside ambient temperatures during the hottest part of the days due to
the use of non-reflective infrastructure materials that would capture
heat and provide no insulation [2]. This led to the energy consumption
of TCLs to vary across our sample depending on ambient temperature (a
characteristic that is not taken into account in most thermal models).
The duty cycle (the ration of time it takes for a refrigerator to travers its
dead-band in an on state vs. total time in compressor on and off states)
was also found to fluctuate during the way (a parameter that is kept
constant in most thermal models). Sensor data presented evidence that
diverges significantly from previous TCL modeling assumptions that
have been published elsewhere. The data distribution of key TCL
thermal parameters included ambient temperature (mean: 30 °C, stan-
dard deviation: 3 °C), dead-band width (mean: 9 °C, sd: 4 °C), tem-
perature set point (min: −20 °C, max: 5 °C), duty cycle (mean: 0.52,
min: 0.1–max: 0.9), coefficient of performance (0.01–0.03), and effi-
ciency performance index (mean: 1.2, sd: 2.4). See [2] for a more in
depth analysis of retrieved sensor data and key TCL parameters.

Sensor baseline data was collected from July 2015 to January 2016,
during which there was no interaction with the participants. From
January 2016 to July 2016 there was a co-design period where we
worked with the treatment group (roughly once per month) to develop
clear and useful information snippets (text and figures) for the monthly
paper reports they would receive, as well as to ensure that the real-time
SMS energy alerts were clear and understandable by everyone. The
intervention (monthly energy reports, flexible demand and real-time
text-messaging) began in July 2016 and lasted until December 2016. No
project participants left the project once the demand flexibility inter-
vention began. Further intervention details are provided in the SI.

2.3. Analysis

Given the balanced outcomes of our treatment and control group
participants, we use Bayesian Inference for inter-participant and group
comparisons. The approach is robust for two groups and small samples,
handles outliers, and provides complete distributions of credible values
for group means and standard deviations (and their difference), effect
size, and the normality of the data [44,45]. Thus, Bayesian Inference
estimates five parameters: means of treatment and control (μ1 and μ2),
standard deviations of treatment and control (σ1 and σ2), and the
normality of the data between treatment and control (v) [57,58].

Bayesian inference is desirable for our analysis as it is robust for
small samples, and leads to reallocation of credibility toward parameter
values that can consistently describe the observed data [58]. In this

Table 1
Selection of baseline characteristics and perspectives on financial burden and
future concerns.

Sample
Houses N=219
Micro-Enterprises N=216
Age – Mean (Standard Deviation) 47 (SDV=15)
Education First two-years of high school
Household size 5.5 people per household

Average vs. Disposable Income ($US/
Month)

Houses $550 vs $70
Micro-Enterprises $520 vs $182

Median Monthly Energy Consumption (kWh/month), Energy Costs ($US/month)
and Cost per Unit of Energy ($US/kWh)

Houses 160 kWh/month, 30$US/month,
0.19$US/kWh

Micro-Enterprises 305 kWh/month, 71$US/month,
0.23$US/kWh

Total bill Houses vs. Micro-Enterprises1 22$US/month vs. 86$US/month

Financial burden2

What is a problem that is recurrently on your mind?
(1) Energy, (2) Food, (3) Access to basic

services
23%, 20%, 12%

What is the biggest financial burden on your small business?2,3

(1) Energy, (2) Loans, (3) Employees 88%, 5%, 3%
Approximately what fraction of your total costs are energy related costs? Median (25th

percentile - 75 th percentile)
Houses 8% (4% - 19%)
Micro-Enterprises 30% (12% - 48%)

Future issues3

Of the following issues, which ones do you consider to be of most concern in the future?
(1) Climate change, (2) Oil dependency, (3)

Electricity prices
36%, 24%, 20%

1 The total monthly bill is lower than the total monthly energy cost because
the total cost is reduced if the house or micro-enterprise manages to be below a
monthly consumption of 150 kWh/month.

2 Perceived financial burden.
3 Only the three most popular perceived financial burdens and future issues

are presented.
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analysis, we estimate three parameter values: (A) pre- vs. post-im-
plementation monthly energy consumption (e.g., August 2015–June
2016 vs July–December 2016), (B) month-by-month differences during
the intervention period (e.g., comparing energy differences between
August and September 2016), and (C) annual differences between the
same months one year afterwards (e.g., August 2015 vs. August 2016).
The analysis begins with a distribution of credible parameter values
that contain previous knowledge without any newly collected experiment
data (a prior distribution), and the reallocation of credibility is provided
by Baye’s rule and applying it to parameters and data [58]:

         ⏟= ×p μ σ μ σ v D p D μ σ μ σ v p μ σ μ σ v p D( , , , , | ) ( | , , , , ) ( , , , , ) / ( )1 1 2 2

posterior

1 1 2 2

likelihood

1 1 2 2

prior evidence

This suggests that the posterior credibility of our estimated para-
meters (μ1, μ2, σ1, σ2) is the likelihood (t distribution) times our prior
distribution, divided by the new evidence D (yii observed from treat-
ment and control groups) [58]. The posterior distribution is then ap-
proximated by using Markov Chain Montercarlo (MCMC), without ex-
plicitly computing p(D). The result is thousands of representative

parameter values that are summarized graphically by a histogram
(Fig. 3 and Supplemental Information) that are used to estimate mean,
mode, standard deviation, and credible differences between treatment
and control [44,45].

Here, we build a prior distribution using both our baseline survey
estimates (N= 435), and an extended literature review of behavioral
energy efficiency intervention and results (see SI)
[25–28,30,31,46–48]. We use a broad informative prior (rather than a
Bayesian non-informative prior) because there is a large sample of
evidence from which we can draw to create a distribution of where we
think the most credible parameter estimates lie. For this, we performed
an extended literature review and summary of over 30 different inter-
vention types, and over 60 papers [59–62], Our summary suggests that
the average reduction due to behavioral energy efficiency (across re-
gions, incomes and study types) is of 10.5% with a standard deviation
reduction of 11.1%. The mean and standard deviation of the standard
deviation across studies is of 11% and 8% respectively.

When assessing the posterior distribution, the high-density interval
(HDI) and the region of practical equivalence (ROPE) help determine

Fig. 2. Intervention [A] and Timeline [B]: [A] The diagram depicts how key parameter data is transmitted to and from households and thermostatically controlled
loads (TCLs) via a GSM to a cloud server. The cloud server collects all participant data, evaluates dispatch center day ahead prices and schedules peak price events; it
also sends energy limit alerts tailored to each participant. Data is aggregated and monthly reports are sent to each participant. The user may override control signals
at any time manually, via SMS. [B] The timeline depicts the schedule and steps of our project implementation, beginning in January 2015 and Finishing in January
2017.
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the credibility of an observed result. The HDI is a 95% density interval
where the bulk of the most credible values fall, and ROPE represents
parameter sizes that may be deemed negligibly different from the null.
In our analysis, we use a ROPE ranging between −2% and 2% (re-
presenting group comparisons and the Hawthorne effect) [25,26,59],
representing a small reduction, no change, or a slight increase in energy
consumption. Results within the HDI and outside ROPE are deemed
credible.

We evaluate three different results: (A) pre- vs. post-implementation
monthly energy consumption (e.g., August 2015–June 2016 vs
July–December 2016), (B) month-by-month differences during the in-
tervention period (e.g., comparing energy differences between August
and September 2016), and (C) annual differences between the same
months one year afterwards (e.g., August 2015 vs. August 2016). Users
are compared to themselves during and at these three different time
points to control for number of appliances, household characteristics
that affect ambient temperature (e.g., roof and wall type, presence of

sky lights), people in household, education, and other baseline char-
acteristics. The comparison in (C) controls for seasonal variations in
consumption and federal holidays that affect both weather and beha-
vioral patterns, and is thus our most robust comparison. For flexible
demand, we use Bayesian estimation to identify credible differences in
refrigerator and freezer energy consumption pre-vs. post-implementa-
tion (all hours), and a subset of peak pricing hour events. The SI in-
cludes full Bayesian estimation results. Our analysis uses the R statis-
tical programming language [63], the MCMC sampling lag called JAGS
[64], and the BEST program for Bayesian means tests in R [44,45].

3. Results and discussion

3.1. Magnitude and uncertainty of behavioral energy efficiency, and flexible
demand participation

We use three different measurements to evaluate the effect of our

Fig. 3. Bayesian Posterior Estimates Treatment (μ1) vs. Control (μ2): [A] Pre-implementation monthly energy consumption (kWh/month), [B] post-intervention
monthly energy consumption (kWh/month), [C] month-by-month differences (kWh/month) during the intervention period (e.g., comparing energy difference
between August and September 2016) and [D] annual differences (kWh/month) between the same months one year afterwards (e.g., August 2015 vs. August 2016).
Black line on x-axis represents the 95% high density interval (HDI), and the red line represents the regional of practical equivalence (ROPE). Median temperature was
30.6 °C in 2015 (sd: 14.5 °C) vs 31.2 °C in 2016 (sd: 15.1 °C), median temperature pre- vs. post intervention months was 31.5 °C in (sd: 14.8 °C) and 30.4 °C 2016 (sd:
15.1 °C) respectively. We highlight year-to-year temperature comparisons, having [D] as our most robust result. The treatment group experiences energy reductions,
despite a small increase in ambient temperature (measured by a weather station). Details are discussed in the text and the full Bayesian parameter estimation is
provided in the SI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

D. Ponce de Leon Barido et al. Applied Energy 228 (2018) 512–523

517



intervention on total energy consumption: (A) post-intervention
monthly energy consumption (e.g., August 2015–June 2016 vs.
July–December 2016), (B) month-by-month differences during the in-
tervention period (e.g., July vs. August 2016), and (C) differences be-
tween the same months in consecutive years (e.g., August 2015 vs.
August 2016). The latter controls for both seasonal consumption var-
iation and federal holidays (e.g., Independence Day), with each parti-
cipant in the treatment and control group being compared with itself
one year ago for every month during the intervention period. We
compare differences in treatment and control for (A), (B), and (C) using
Bayesian estimation and as described in the methods and SI.

We observe the treatment group reducing its total household or
small-business energy consumption relative to the control group in all
these comparisons, by (A) 13.4 kWh (6%), (B) 7.46 kWh (4%), and (C)
16.2 kWh (9%) respectively (Fig. 3). For post-intervention and month-
by-month comparisons, however, our high-density interval (HDI) falls
over zero and within the region of practical equivalence (ROPE) sug-
gesting that our results are not credibly different from zero or from
values with a significant effect size. For month-annual differences,
however, both zero and ROPE are fully outside the HDI suggesting that
our results are credibly different from each other and zero. We consider
the latter to be the most robust result as it controls for several un-
observed factors such as variation in seasonal consumption, federal
holidays, within household variability (e.g., behavior, number of ap-
pliances), and compares both groups to each other.

Peak prices for flexible demand events were identified one day in
advance; events lasted up to three hours (see SI for details). Project
participants were opted-into the flexible demand events (with ability to
withdraw at any given time), and participated an average of 40min for
every hour of a peak pricing event, (median: 53min, sd: 20min) or 70%
of the time of every event (median: 88%, sd: 34%) (Fig. 4). Pooling
together all hours, there was no credible difference between pre- and
post-intervention fridge energy consumption (mean difference Wh:
0.301, sd difference Wh: 20) (Fig. 5A). However, there was a large
usage reduction during flexible demand event hours (mean reduction
post-intervention Wh: 78.3, sd: 48.2) (Fig. 5B and C).

Based on these results we estimate that if one third of the population
(2 million people) received paper reports and energy alerts, Nicaragua
could save $US 29 million in wholesale energy costs annually (using
average prices), and if this same population participated in flexible
demand they could save $US 18 million annually (using differences
between peak and off-peak prices). Using actual generation emissions
from Nicaragua’s grid in this scenario, behavioral energy efficiency
could save over 6 million metric tons of CO2eq annually (using average
monthly emissions) and flexible demand would avoid over 3 million
metric tons of CO2eq (using peak prices hourly average emissions).
Details in SI.

3.2. Social co-benefits and the effect of scarcity

For tracking improvements related to energy literacy, we measured
the accuracy of perceived vs. actual energy consumption ($US and
kWh) at baseline, intervention, midline, and endline. At baseline, the
treatment group had a slightly larger overestimate of their perceived
energy costs relative to the control group (median: $US 7 vs. $US 5,
respectively). When the intervention began, and likely due to the co-
design of the energy information mechanisms, the treatment group had
improved its ability to recall its actual consumption within an error $US
2 and largely maintained this improved accuracy throughout the mid-
line (error: $US 3 treatment vs. $US 4 control) and endline surveys
(error: $US 1 treatment vs $US 3 control). Although both groups in-
creased their accuracy throughout the pilot, the treatment group had a
greater improvement in accuracy of $US 6 against a $US 2 improve-
ment by the control. The treatment group also significantly improved
the accuracy of recalling their actual energy consumption (kWh) from a
baseline underestimate of 30 kWh, to a mean endline underestimate of

14 kWh (median: 0 kWh, sd: 118 kWh). The control group, on the other
hand switched from an underestimate of 30 kWh to an overestimate of
20 kWh (median: 6 kWh, sd: 117 kWh). During the final survey, we used
two additional metrics to evaluate whether increased attention to en-
ergy bill data permeated to other non-previously surveyed metrics:
accuracy at recalling the unit cost of energy, and monthly water ex-
penditures. On average, the treatment group had almost a perfect grasp
of the unit cost of energy (mean error: $US 0/kWh, median error: $US
0/kWh, sd: $US 0.06/kWh), while the control group had a mean error
of $US 0.5/kWh (median error: $US 0.07/kWh, sd: $US 0.99/kWh),
which is 2.5 times higher than the actual unit cost of energy. With re-
gards to water expenditures, the treatment group had, on average, a
$US 2/month underestimate of their water bill (median: $US 12/
month, sd: $US 101/month), while the control group had a $US 56/
month overestimate (median: $US 9.74month, sd: $US 155/month).

Identified co-benefits through surveys and interviews include in-
formation spillover, user empowerment, and the potential for high-re-
solution information to reduce energy-bill induced stress. Some project
participants reported that they forwarded energy information to others
(extended family and friends), suggesting that the recorded information
benefits could be an underestimate, as those others might have also
reduced energy consumption in response. In our sample, home and
small business energy management was performed mostly by women,
several of whom reported that post-intervention they received new
respect for their financial and energy management ideas. Women would
use information to highlight management strategies that were being
successful including limiting consumption (e.g. televisions only in cer-
tain hours, fans only during the day), and scheduling some energy-
consuming activities such as washing once a week or bi-weekly.
Research elsewhere, however, has found that interventions to support
behavioral energy efficiency can negatively impact household power
(and gender) dynamics, with men suggesting to reduce the use of
common gender specific appliances (e.g., hair dryers) and placing the
workload of energy management primarily on women [51,52,65,66].
Though limiting use of comfort appliances such as fans could have
negative side-effects (e.g., heat stress), these issues were not brought up
by participants.

Our intervention, however, was unable to reduce the user’s per-
ceived high stress of energy bills. At baseline, the most common feeling
amongst treatment and control groups was that electricity was “very
hard to pay” (1: easy to pay, 2: more or less hard to pay, 3: very hard to
pay, 4: extremely hard to pay). At the end of the study, stress remained
the same and was unaffected by flexible demand payments, more
controlled scheduling, information, or actual reductions in consump-
tion. Furthermore, although energy reports included suggestions and
advice on a variety of efficiency retrofits, the participants implemented
none. Reasons for failure to neither save, nor spend money on retrofits
included the continued reoccurrence of immediate pressing needs (e.g.,
energy bill, education, health), perceptions that flexible demand pay-
ments were too small to be saved (i.e., it was better to use them for
immediate needs), lack of awareness about how to purchase, retrieve
and install new appliances, lack of transportation and time, and per-
ceived high cost of new appliances. When participants were asked if
they would forgo payments if someone else purchased and installed
efficient appliances for them, 85% answered “yes”, with participants
willing to exchange one payment month or all future payments to re-
ceive help in long term energy efficiency retrofits.

Spending new income on pressing needs rather than making in-
vestments in the future, and inability to act (or choosing not to) to
resolve constant stressors are well explained by the psychology of
scarcity [67]. In scarcity, tunneling is a behavior that might help solve
an immediate primary problem, but a heightened focus on immediacy
can make one short sighted, leaving less attention for other less pressing
issues that are recurrently neglected [67]. Although our participants
had good intentions (e.g., saving energy now), they were unable to
create and follow a long run savings plan. Our surveys indicated that
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saving energy involved diligent work where one missed text-message,
an unexpected visitor, or a sick child would impede saving energy
plans. Despite real energy savings and small cash infusions, the lack of
slack (mental and financial) and constant external shocks (temporal and
financial) caused actions consistent with the psychology of scarcity
[67]. Participants highlighted that their greatest perceived benefit was
bill stability, which presumably reduced financial shocks to their
household budget [67].

3.3. An estimate to the value of energy information

To determine the value of energy information, we offered a will-
ingness to pay ‘information bidding game’ to the treatment group, after
which participants would either keep information or cash as reward for
their flexible demand contributions. Our enumerators carried with
them a bag with pieces of paper that had numbers between 25 and 200
written down in each of them in increments of 25 Cordobas (approxi-
mately US$0.90). If participants bid a number that was lower than the
piece of paper drawn from the bag, they would lose the information and
keep receiving the same payment as before. If they bid a number that

was equal or higher to the paper drawn from the bag, they would keep
the information, and keep receiving a smaller payment (the difference
between their flexible demand payment, and their bid). After doing one
practice round of bidding, the actual game was played. Out of 20 par-
ticipants, only two participants bid zero, suggesting that they would
rather keep the money than the information. For the rest of the parti-
cipants, the mean bidding value was $US 4 (median: $US 3.4, sd: $US
1.9), with 10 of them winning the bid, and eight of them losing the bid.
This suggests that participants were willing to lose two-thirds of their
payment, and continue participating in flexible demand, as long as they
kept receiving high-resolution information. Non-zero bids suggest that
most participants were willing to gamble their payments in exchange
for information. Rationale for keeping the information included the
opportunity to pursue long-term energy savings, increase under-
standing of the household budget, education, and knowledge. Money,
our participants mentioned, would simply leave them too fast. While
our participants had little value for energy information at the beginning
of the study, by the end of the study they were willing to give up $US 4/
month to keep it.
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1.0 Fig. 4. Median Normalized Energy Consumption
(0–1) Pre-and Post-Implementation: [A] and [B]
depict pre- vs. post-intervention hourly energy
consumption by Participant ID. [B] Post-interven-
tion daily fridge energy consumption is more con-
centrated in regular daily intervals than in pre-in-
tervention [A]. One can see that the colors and
values in [B] start and stop at specific hours, while
the colors and values in [A] start and stop in non-
scheduled time intervals. We present normalized
energy consumption by participant ID to avoid
unique hourly energy values that would skew the
data, and hence data representation, in the heat
map. Full results are presented in the SI.
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3.4. Bottom-up and top-down challenges and opportunities

Our research shows that information systems provide multiple
benefits beyond their immediately intended goals in low-carbon, re-
source constrained environments. First, this work has demonstrated
that flexible demand interventions can be incredibly successful if they
consider inherent behavioral and social characteristics of end-users.
This was exemplified by turning the high-resolution data collected for
automation and control of flexible loads (e.g., freezers and

refrigerators), into high-resolution real-time feedback that led to im-
portant behavior change and energy efficiency savings. Equally im-
portant were the derived co-benefits from our implementation. Energy
literacy, knowledge creation, empowerment and budget management
all emerged as co-benefits beyond the immediate energy, environ-
mental and cost savings of our program. At the same time, there are
multiple challenges for energy efficiency and flexible demand services
in ‘real world’ settings like Managua, and services that do not provide a
suite of enabling products will unlikely receive popular end-user sup-
port.

The results and lessons learned from our implementation suggest
that there are important design elements that may lead to the success or
failure of future applications of tandem behavioral energy efficiency
and flexible demand programs. Three key elements for a successful
implementation include: (1) High resolution interaction, co-design and
good customer service, (2) understanding and support of user intrinsic
motivations, and (3) creation of new locally relevant business models.
In communities with little top-down support for energy efficiency, or
waste management, as our demonstration project suggests, the combi-
nation of (1), (2) and (3) can lead to high end-user engagement, po-
sitive interactions with the local community, increased persistence, and
the creation of new models of end-user engagement that are not de-
pendent on top-down stakeholders (e.g., governments, utilities). These
opportunities, however, are only capitalized if they are thought about
from program design, as it is necessary to continuously collect data to
validate improvements or hypotheses to be explored. In our im-
plementation, (1), (2), and (3) were manifested in the form of (1) co-
design of information systems with users so that feedback mechanisms
would be immediately useful and easily understood (only variables that
users deemed important were provided to them), (2) encouraging
program participation by mainly focusing on energy independence and
monetary savings, and (3) identifying all the barriers that users faced to
achieve their desired energy efficiency goals (e.g., access to finance,
inefficient appliances, and needed household retrofits) and providing
information for end-users to access solutions that could reduce these
barriers (e.g., access to sustainable financing for new appliances and
retrofits).

Design flaws that may jeopardize future energy efficiency and
flexible demand implementations (small pilot projects or large scale
deployments) include not collecting prior knowledge of household,
business or community dynamics (e.g., budget preferences, consump-
tion patterns, budgetary goals and restrictions), having little prior
knowledge of end-user behavior, and no data or understanding of the
local dynamics regarding the psychology of scarcity. These design flaws
can lead to poorly designed mechanisms to overcome the energy effi-
ciency gap (e.g., requesting access to a savings account to provide fi-
nancing, when 49% of adults in Latin America do not have access to
traditional financial services), rebound effects (e.g., users increasing
their energy consumption after implementation of an efficiency pilot)
[10], and lack of deep and permanent benefits for project participants.
For example, in our pilot, not having designed a final services program
in parallel to our flexible demand and behavioral energy efficiency
intervention meant that our participants were not able to make long-
term investments towards their home, business, or budget. Future
successful programs would reduce budget uncertainty and instability,
reduce the time required to learn about energy efficiency, provide
transport to buy efficient appliances (and discard old ones), and sim-
plify paperwork, among many other challenges that end-users com-
monly face.

There are also important top-down challenges to scale energy effi-
ciency and flexible demand projects in resource constrained environ-
ments. Because there is no utility de-coupling (splitting the utility’s
earnings from its sales) in most (if not all) countries of the rising south,
efficiency and flexible demand interventions at scale would generate a
loss and hence not be palatable to most utilities. A flexible demand
strategy that would arguably allow a utility to increase revenue through

Fig. 5. Bayesian Estimation Results Pre- vs. Post Flexible Demand Intervention:
Mean Differences of Pre- vs. Post Intervention Fridge Energy Consumption: [A]
Posterior distribution of mean differences pre- vs post-intervention for all hours
(0–23), [B] Differences pre-vs post intervention for all hours by participant id
(differences in Wh), and [C] Posterior distribution of mean differences within a
subset of hours in which there were peak price events. [A] suggests that there is
no difference between fridge energy consumption pre- vs. post intervention,
and [C] suggests that there was a large credible reduction post-intervention
during peak pricing event times.
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the purchase of cheaper energy, for example, would be rejected as the
utility would be required by a regulator to reduce near-future rates due
to their purchase of cheaper energy. The absence of financial me-
chanisms or structures to incentivize utilities to participate in large-
scale and effective energy efficiency and flexible demand means that
support for this important resource dwindles depending on political
favor and interest. Thus, and faced with serious top-down im-
plementation barriers, user-focused strategies are crucial for beha-
vioral, energy efficiency, and smart city interventions to be successfully
scaled.

To develop solutions that succeed at the local level, city govern-
ments, utilities, and development banks must embrace the role of cost-
effective pilots and demonstrations [68]. Designing top-down systems
and solutions is expensive and ineffective if solutions are not adopted, if
the results are far smaller than originally intended (or in the opposite
direction) [10], or if the approach is missing key design elements. Re-
cruiting entrepreneurs and local developers to re-imagine existing
business models and technologies in local contexts, and piloting these
innovations, is crucial to scaling energy efficiency, and socially

inclusive smart city solutions. If well implemented, pilot projects can
lead to understanding behavioral community and technology dynamics
that are crucial to make changes to existing technology, and future
large scale programs, to avoid past mistakes and prevent future ones.
Cities and neighborhoods that champion these small steps and pilot
initiatives like likely reap the benefits of better use of funds, and deeper
and more widespread benefits towards local-participants (Fig. 6).

4. Conclusions, implications and limitations

In this paper, we presented the results from Latin America’s first
pilot of micro-level (households and micro-enterprises) demand-side
management and behavioral energy efficiency in low-income neigh-
borhoods of Managua, Nicaragua. Previous studies evaluating these two
strategies often explored them separately, and further, they usually
investigated issues related to behavior, technology, and opportunities
for social co-benefits in isolation. Despite a large potential for beha-
vioral energy efficiency and demand-side management in low, low-
middle income communities, real-world pilot programs remain scant.

Bottom-up
Opportunities                          &                                 Challenges

1. High Resolution Interaction, Co-Designand Good 
Customer Service:

• Leads to high engagement (e.g., 9% energy 
savings, 80% participation in flexible demand).

2. Understanding, and Support of Intrinsic Motivations:
• Fosters high engagement and positive interaction

with the local community (e.g., sharing information).
• Fosters desire to learn (e.g., increased literacy around

energy, water, and the household budget).

3. Creation of New Business Models:
• High engagement and community support, even in the 

absence of top-down support, leads to new business 
models  that can exist independently (e.g. a third-party 
retrofitting an appliance, room or home in exchange of 
appliance control for flexible demand). 

1. Little Prior Knowledge of Household, Business or Community 
Dynamics:

• Leads to poorly designed sustainability mechanisms (e.g., 
requesting recommendation letters, a savings account or 
access to a truck to access financing to energy efficient 
appliances).

2. Little Prior Knowledge of User Behaviour:
• Leads to failed deployments (e.g., large and small where 

there is a large rebound effect, or leads to increased 
consumption and waste). 

3. The Psychology of Scarcity:
• Projects that don’t take into account real life constraints 

(e.g., budget and time) to homes and businesses in low, 
low-middle income communities will create only marginal 
benefits (e.g., no realized net monetary savings, or long-
term benefits to household infrastructure or health).

Top-Down
Opportunities                          &                                 Challenges

1. Small Investments in Pilot Projects Lead to Large Returns:
• Successful and un-succesful projects create best-

practices and lessons learned in order to avoid repeating 
mistakes at scale, and maximize the benefits of large-
scale deployments 

2. Inclusive Technological Leap Frogging: 
• Pilot projects lead to understanding behavioural, 

community and technology dynamics that are crucial to 
make changes to existing technology in order to avoid 
past mistakes and prevent future ones.

1. Absence of Decoupling:
• Without utility decoupling (the separation of utility sales from 

revenues. e.g., the case of electric utilities in California) it is hard for 
utilities to be incentivized to pursue flexible demand and 
behavioural energy efficiency at scale.

2. Absence of Long-Term Mechanisms to Support Best Practices:
• Without decoupling, there is an absence of long term mechanisms 

to pursue opportunities and best practices in energy efficiency and 
flexible demand. Support changes with the vicissitudes of political 
favour over time.

Fig. 6. Bottom-up and top-down opportunities and challenges for flexible demand and behavioral energy efficiency in data-limited low-carbon resource constrained
environments.
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We used a randomized experiment in which thirty participants
(households and micro-enterprises) received a wireless sensor gateway
that enabled flexible demand of their refrigerators and freezers, and
provided them with co-designed high-resolution energy information.
Another thirty participants were part of a control group. The treatment-
group reduced their energy consumption by nine percent relative to the
control, and participated extensively in peak-shaving flexible demand.
Increased energy literacy, improved financial management and user
empowerment were also identified as intervention co-benefits. We
found that improved access to energy information was more important
than cash when incentivizing flexible demand participation, and
documented the multiple barriers to scale flexible demand and energy
efficiency strategies, including bottom-up (e.g., appliance financing)
and top-down (e.g., decoupling) challenges as well as ways to overcome
them. As more low, low-middle income countries transition away from
fossil fuels, interventions such as this one will become increasingly
necessary and attractive.

Data availability

All code and data are available from the corresponding author upon
request or by direct download via GitHub (https://github.com/
diegoleonbarido/flexbox_dree_pub.git).
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